

Instandhaltungs-Information

Nr. 22

November 2016

Beitrag der Instandhaltung zum effizienten Anlagenbetrieb und zu den Betriebskosten/Lebenszykluskosten

Inhal	t	Seite
1	Vorwort	2
2	Betriebsführung, Lebenszyklusbetrachtung, Instandhaltung	2
2.1	Betriebsführung	2
2.2	Lebenszyklus(kosten)betrachtung	2
2.3	Instandhaltung	2
3	Potenziale guter Betriebsführung	3
3.1	Nutzerzufriedenheit	3
3.2	Energieeffizienz	3
3.3	Sicherheit	3
3.4	Werterhaltung	3
4	Vorgehensmodell zur Potentialerschließung	3
5	Praxiserprobte Maßnahmen mit Leuchtturmcharakter	4
5.1	Anpassung von Betriebszeiten	6
5.1.1	Lüftungs- und Klimaanlage	6
5.1.2	Heizungsanlage	6
5.2	Anpassung von Leistungen, Temperaturen und Volumenströmen	7
5.2.1	Anschluss- bzw. Heizleistung	7
5.2.2	Raumtemperatur	7
5.2.3	Volumenstrom in Lüftungsanlage	8
5.3	Auswahl und Einsatz von Luftfilter im Zuge der Wartung	8
5.3.1	Luftfilter im Betrieb	9
5.3.2	Lebenszykluskostenbetrachtung (LCC)	9
5.4	Maßnahmen bewertet bzgl. ROI und Energieeinsparung	11
5.4.1	Kriterium: Kurzfristiger ROI (≤ 1 Jahre/≤ 3 Jahre)	11
5.4.2	Kriterium: Mittelfristiger ROI (≤ 5 Jahre)	11
5.4.3	Kriterium: Langfristiger ROI (≤ 10 Jahre/> 10 Jahre)	12
6	Fachunternehmen – Partner mit Kompetenz und Lösungsansätzen	13

Arbeitsgemeinschaft Instandhaltung Gebäudetechnik (AIG) im VDMA

Lyoner Straße 18, 60528 Frankfurt am Main

Tel: 069/66 03-14 89, Fax: 069/66 03-24 89, E-Mail: aig@vdma.org

1 Vorwort

Funktionell und komfortabel, sicher sowie verfügbar und obendrein effizient, so sollen sie sein, Gebäude mit ihren technischen Anlagen. Dabei ist es unerheblich, ob es sich um Gebäude handelt, in denen Menschen wohnen, arbeiten, vielleicht ihre Freizeit genießen, oder eine industrielle Produktion angesiedelt ist. Eines haben diese Gebäude gemeinsam, sie verfügen in aller Regel über verschiedene, zumeist komplexe technische Anlagen und Systeme, deren Komponenten über Automationstechnik verknüpft sind und gesteuert werden.

Gebäude und deren technische Ausrüstungen unterliegen während ihrer Nutzung einer betriebsbedingten Abnutzung. Aus der Erfahrung wissen wir, ohne Instandhaltung lässt sich deren sichere und effiziente Funktion auf Dauer nicht gewährleisten. Genauso wenig lassen sich ohne Instandhaltung deren Qualität erhalten oder sogar verbessern. Gerade die Instandhaltung trägt wesentlich dazu bei, den Betrieb und die Verfügbarkeit der Funktion über einen festgelegten Zeitraum sicher zu stellen.

Eine strategisch angelegte und konsequent ausgeführte Instandhaltung ist somit nicht nur "nice to have", sondern erbringt Mehrwert für Eigentümer und Nutzer.

Diese Schrift

- führt in die Betriebsführung und Instandhaltung ein,
- nennt Potenziale guter Betriebsführung,
- beschreibt ein Vorgehensmodell zur Potentialerschließung,

und zeigt über ausgewählten Beispielen aus der Praxis

• Ansatzpunkte und Maßnahmen der Instandhaltung mit ihrem jeweiligen quantifizierten Nutzen auf Basis von Return of Investment (ROI) und Energieeinsparung.

2 Betriebsführung, Lebenszyklusbetrachtung, Instandhaltung

Betriebsführung, Lebenszyklusbetrachtung und Instandhaltung sind die Schlüsselthemen für einen effizienten und sicheren Anlagenbetrieb. Die Betriebsführung ist die übergeordnete Funktion; für die Wirksamkeit einer guten Betriebsführung sind die Lebenszyklusbetrachtung und Instandhaltung essentiell. Sie sind auch die Grundlage für Investitionsplanungen, die kein Gegenstand dieser Veröffentlichung sind.

2.1 Betriebsführung

Betreiben umfasst nach DIN 32736 die Leistungen, welche zur wirtschaftlichen Nutzung der baulichen und technischen Anlagen erforderlich sind. Hierzu zählen das Inbetriebnehmen, Bedienen, Überwachen, Optimieren, Instandhalten (nach DIN 31051), das Beheben von Störungen, das Außer- und Wiederinbetriebnehmen, die Durchführung von Wiederholungsprüfungen, sowie das Erfassen von Verbrauchswerten. Bestehende Betriebsvorschriften sind zwingend einzuhalten.

2.2 Lebenszyklus(kosten)betrachtung

Der "Lebenszyklus" umfasst alle Phase, von der Konzeption bis zum Rückbau und der Entsorgung. Allen Phasen lassen sich Kosten zurechnen. Mit der Lebenszyklusbetrachtung erfolgt die Ermittlung und Analyse. Das Ergebnis ist eine ganzheitliche Entscheidungsgrundlage für die Betriebsführung und die Investitionsplanung.

2.3 Instandhaltung

Die Instandhaltung umfasst nach DIN 31051:2012-09:

Wartung: Maßnahmen zur Verzögerung des Abbaus des vorhandenen Abnutzungsvorrats.

<u>Inspektion:</u> Maßnahmen zur Feststellung und Beurteilung des Istzustandes einer Einheit einschließlich der Bestimmung der Ursachen der Abnutzung und dem Ableiten der notwendigen Konsequenzen für eine künftige Nutzung.

<u>Instandsetzung:</u> Physische Maßnahmen, die ausgeführt wird, um die Funktion einer fehlerhaften Einheit wiederherzustellen.

<u>Verbesserung:</u> Kombination aller technischen und administrativen Maßnahmen sowie Maßnahmen des Managements zur Steigerung der Zuverlässigkeit und/oder Instandhaltbarkeit und/oder Sicherheit einer Einheit, ohne ihre ursprüngliche Funktion zu ändern.

3 Potenziale guter Betriebsführung

Die vier wesentlichen Felder sind:

- Nutzerzufriedenheit
- Energieeffizienz
- Sicherheit, insbesondere im Sinn von Gesundheitsschutz
- Werterhaltung

3.1 Nutzerzufriedenheit

Die Nutzerzufriedenheit wird wesentlich durch die Verfügbarkeit und den Komfort/Behaglichkeit definiert. Eine erlebbare Betriebsführung erzeugt auf Nutzerseite eine Wertschätzung, die in der Regel zur Stabilität in der geschäftlichen Beziehung beiträgt.

3.2 Energieeffizienz

Sie basiert auf einer modernen Anlagentechnik, deren bedarfsgerechten Instandhaltung und einer nutzungsorientierten Fahrweise. Im Ergebnis reduziert sich der spezifische Energieverbrauch auf ein Minimum, was zu reduzierten Betriebskosten führt.

3.3 Sicherheit

Von technischen Einrichtungen und deren Betrieb darf keine Gefahr ausgehen. Für den Betrieb ist es eine effektive Instandhaltung, die über die reine Funktion hinaus die Hygiene und Sicherheit der Anlage gewährleistet.

3.4 Werterhaltung

Abhängig von der mittel- und langfristigen Nutzungsplanung liefert gute Betriebsführung einen wesentlichen Beitrag zur Werterhaltung der Immobilie.

4 Vorgehensmodell zur Potentialerschließung

Das Vorgehensmodell beinhaltet in seinem Kern folgende drei Bausteine:

- Betriebsführung kontinuierlich
- Instandhaltung regelmäßig/wiederkehrend
- Lebenszyklusbetrachtung fallbezogen

Das in Bild 1 gezeigte Modell beschreibt den situationsgerechten Aufbau und Ablauf der Prozesse mit motivierten und qualifizierten Beteiligten. Dies ist immer der Eigentümer der Immobilie, sowie einzelfallbezogen

- Fachplaner
- Anlagenerrichter
- Dienstleister (intern oder/und extern)

Die Instandhaltung liefert wichtige Fakten für die Betriebsführung und damit auch die Grundlage für eine Lebenszyklusbetrachtung.

Voraussetzung hierfür sind Regeln und Vereinbarungen für das Zusammenspiel der Beteiligten. Die Stellschrauben hierfür sind

- Grad der Verantwortungsübertragung, Zuständigkeiten und Schnittstellen
- Methodik der Lieferantenauswahl und –bewertung
- Kennzahlen und zugehörige Zielvereinbarungen
- Vertragslaufzeiten

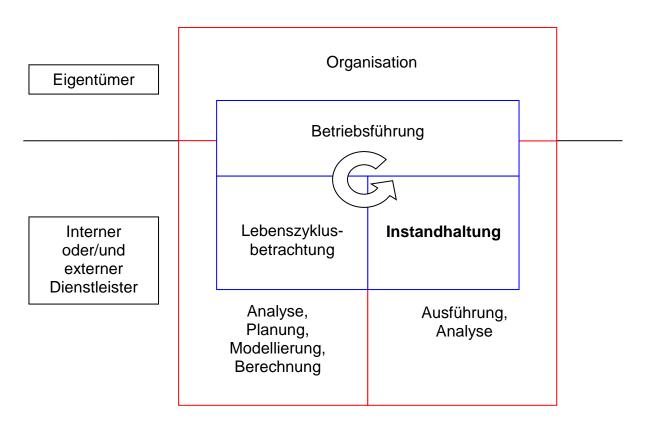


Bild 1 — Vorgehensmodell

Der Turnus der Überprüfung o.g. Stellschrauben orientiert sich an der Nutzung sowie der Komplexität der technischen Einrichtungen der Immobilie. Abstände zwischen 3 und 5 Jahren sind zu empfehlen.

5 Praxiserprobte Maßnahmen mit Leuchtturmcharakter

Die Abschätzung des finanziellen Nutzens und der Amortisation von Instandhaltungsmaßnahmen ist kein leichtes Unterfangen. Jede Immobilie und Anlage ist ein Unikat mit spezifischen Anforderungen und Möglichkeiten.

Möglichkeiten und Potentiale für Optimierungen können auf verschiedene Weise ermittelt werden:

- a) im **laufenden Betrieb** durch Aufnahme und Bewertung von Ereignissen in der Anlage und aus Reaktionen bzw. Meldungen von Nutzern
- b) durch **Inspektionen**, die als Projekte durchgeführt werden (Beispiel Energetische Inspektion an Klimaanlagen nach §12 EnEV)
- c) im Zuge von Wartungen und Instandsetzungen.

Eine Reihe real durchgeführter Instandhaltungsmaßnahmen wurde von Fachunternehmen in Bezug auf Aufwand, Umsetzbarkeit und Nutzen analysiert. Hieraus resultiert ein mit durchschnittlichen Anhaltswerten zur Amortisation und möglichen erzielbaren Einsparungen hinterlegter Maßnahmenkatalog, der als Ideengeber für Eigentümer, Betreiber, Investoren und Fachunternahmen der technischen Gebäudeausrüstung (Instandhaltung und Anlagenbau) dienen kann und soll. Ausgewählte Beispiele finden Sie in Abschnitt 5.1 und 5.2.

Ergänzend wird in Abschnitt 5.3 am Beispiel von Luftfiltern aufgezeigt, welche Effekte im Zuge der Wartung allein über die richtige Auswahl und den Einsatz hochwertiger, energieeffizienter Komponenten erzielbar sind. Luftfilter sind in hohem Maße energieverbrauchsrelevant und unterliegen auf Grund der im Betrieb auftretenden Verschmutzung der Notwendigkeit des periodischen Austausches/Ersatzes.

5.1 Anpassung von Betriebszeiten

5.1.1 Lüftungs- und Klimaanlage

			Einsparung in %						
		≤ 3	≤ 5	≤ 10	> 10				
Wärme-Arbeit					ROI ≤ 1Jahr				
Strom-Arbeit					ROI ≤ 1Jahr				
Schwachstellen/ Notwendigkeit	Hoher Energieverbrauch durch unzureichende Anpassung der Betriebs zeit der RLT-Anlagen an die Gebäudenutzungszeit								
	Kein E	Berücksichtigen v	on Umnutzung o	der Leerstand					
Beschreibung			der eingestellter ebäudes bzw. ein						
		sschauendes Wa anlage unter Bea	ählen und Anpas chtung	ssen der Betrieb	szeiten der Lüf-				
	• D	er Nutzungszeite	en						
	• D	es Zeitraums ab	zuführender Last	en					
	_	Gegenseitiger Bee agen	einflussung bzw.	Abhängigkeit ve	rschiedener An-				
Potentiale/ Vorteile	Reduz verbra		und Kälteenergie	e, des Strom- ur	nd des Wasser-				
	Deutli	che Kosteneinspa	arung durch Ener	gieverbrauchsre	duzierung				

5.1.2 Heizungsanlage

_		Einsparung in %					
			≤ 5	≤ 10	> 10		
Wärme-Arbeit				ROI ≤ 1Jahr			
Strom-Arbeit		ROI ≤ 1Jahr					
Schwachstellen/ Notwendigkeit			Heizenergieverbrauch durch unzureichende Anpassung der Beeit der Heizungsanlage und der Gebäudenutzungszeit				
		betrieb der Kess schaltung	selanlage ohne	Nachtabsenkung	bzw. Wochen-		
Beschreibung		ssen der Regelbe ngszeit	etriebszeit der He	eizungsanlage a	n die Gebäude-		
	Beach	sschauende Wah itung der Gebäud owie der Nutzund	deeigenschaften				
		Setriebsbeginn: c abhängig von Bai	-	n vor Beginn de	er Nutzungszeit		
		Setriebsende: ca. RLT und Bauphys		Ende der Gebäu	udenutzungszeit		
	• 0	Optimierung durch	n Wettertrendbee	influsste Regelur	ng		
Potentiale/ Vorteile		zierung des Heiz ssen der Regelbe	•				
	Energ	iekosteneinsparu	ing				

5.2 Anpassung von Leistungen, Temperaturen und Volumenströmen

5.2.1 Anschluss- bzw. Heizleistung


		Einsparung in %						
		≤ 3	≤ 5	≤ 10	> 10			
Wärme-Arbeit					ROI ≤ 1Jahr			
Schwachstellen/ Notwendigkeit		perdimensionierte Heizleistungen infolge von Energieoptimierungen, utzungsänderungen, Leerstand oder Außerbetriebnahme von Gebäuteilen						
Beschreibung	leistur der m meter	Überprüfen der installierten Heizleistung bzw. vorgehaltenen Anschlusseistung und Anpassen an den realen Wert (Überschlägige Überprüfung der max. Heizleistung durch Berechnen oder Ermitteln relevanter Parameter unter Normbedingungen)						
	Fernw	rärme:						
		inschlussleistung ach Bedarf und i						
		lberprüfen von m ur weiteren Redu			denschaltungen			
	Heizke	essel:						
	 Mehrkesselanlagen: Auswahl der geeigneten Kesselkom und Außerbetriebnahme nicht benötigter Kessel inkl. Ti vom Heizungsnetz 							
Potentiale/ Vorteile		rärme: Reduzieru Ilussleistung	ung von Anschlu	sskosten durch	Reduzieren der			
	Heizke	essel: Reduzierui	ng des Heizenerg	gieverbrauchs				

5.2.2 Raumtemperatur

		Einsparung in %						
		≤ 3	≤ 3 ≤ 5 ≤ 10		> 10			
Wärme-Arbeit				ROI ≤ 1Jahr				
Strom-Arbeit		ROI ≤ 1Jahr						
Schwachstellen/	Unang	gepasste Temper	aturen in der Hei	z- und Kühlperio	de			
Notwendigkeit		er Energieverbrauch für die Gebäudeheizung und Erzeugung von ankälte						
Beschreibung	Überp	rüfung der örtlich	en Raumtempera	aturen				
	Anpassung der Raumtemperaturen an die jeweilige Nutzung bzw. den Bedarf							
	Т	Während der Heizperiode sind in der Regel 20°C (Stufe 3 bei Thermostatventilen) für Aufenthaltsräume von Personen ausreichend						
	3	Während der Kühlperiode kann die Raumtemperatur 26°C (bei 32°C Außentemperatur) betragen, es wird eine gleitende Anpassung der Raumtemperatur empfohlen						
Potentiale/	Reduz	Reduzierung von Heiz- und Kälteenergiekosten						
Vorteile		osenkung der Raumtemperatur im Heizbetrieb um 1 °C kann den stoffbedarf um bis zu 6 Prozent reduzieren						

5.2.3 Volumenstrom in Lüftungsanlage

			Einspart	ung in %			
		≤ 3	≤ 5	≤ 10	> 10		
Wärme-Arbeit					ROI ≤ 1Jahr		
Strom-Arbeit					ROI ≤ 1Jahr		
Strom-Leistung					ROI ≤ 1Jahr		
Schwachstellen/ Notwendigkeit	Frisch	dimensionierte Volumenströme zum Versorgen der Gebäude mit hluft (z. B. nach Umnutzung, Leerstand, zu hoch geplante Persoelegung)					
Beschreibung	Außer		eitigen Volumens gs- und Regelgrö	•	•		
		ssen des Volum ungstechniken	enstroms an de	n Bedarf mittels	verschiedener		
	• [)rehzahlregelung	(FU oder Stufeni	regelung)			
	• [rallregelung					
	• V	entilatorblatteins/	tellung				
	• [Prosselregelung (Drosselklappen)				
	• B	Bypassregelung (I	Bypassluftführun	g)			
Potentiale/ Vorteile	Koste ren	ensenkung durch Reduzieren des Stromverbrauchs der Ventilato-					
	Verrin	gerung des thern	nischen Energiev	erbrauchs			
	Gering	gere Anschlussle	istung (Wärme, K	Kälte und Strom			

5.3 Auswahl und Einsatz von Luftfilter im Zuge der Wartung

5.3.1 Luftfilter im Betrieb

Luftfilter haben die Aufgabe, in der Luft enthaltene Verunreinigungen abzuscheiden. Im Betrieb werden die aus der Luft abgeschiedenen Partikel in das Filtermedium eingelagert. Dadurch steigen Druckverlust und Energieverbrauch. Beim Erreichen eines festgelegten Zustandes, in der Regel die Enddruckdifferenz, ist das Filter gegen ein neues auszutauschen. Luftfilter zählen somit zu den typischen Komponenten, die im Zuge der periodischen Wartung ausgetauscht werden müssen.

Jedoch ist Filter nicht gleich Filter; verschiedene Medien (Synthetikmaterialien mit oder ohne elektrostatischer Aufladung, Glasfasermaterialien etc.) und Konstruktionen (Filtermedienfläche etc.) beeinflussen in hohem Maße die Abscheideleistung, den Druckverlust, die Standzeit und – ganz wichtig – den Energieverbrauch. Kurz zusammengefasst lässt sich sagen:

- Längere Standzeiten führen zu niedrigeren Wartungskosten.
- Ein über die Betriebszeit langsam ansteigender Druckverlust führt zu geringeren Energiekosten.
- Die Auswahl der Filter ist unter dem Gesichtspunkt der Lebenszykluskosten zu treffen, die allein auf den Anschaffungskosten basierende Kaufentscheidung ist falsch.

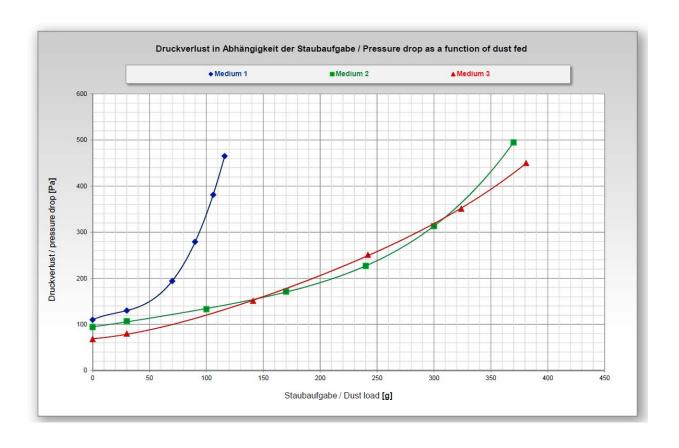
5.3.2 Lebenszykluskostenbetrachtung (LCC)

LCC - Investitionen	LCC - Energie			
Anschaffung (Filter)	Energiepreis			
Material (z. B. Aufnahmerahmen)	Betriebsdauer			
Lohn (Montage)	Druckverlust Filter			
	Volumenstrom			
	Ventilator-Wirkungsgrad			
LCC – Wartung	LCC - Entsorgung			
Standzeit Filter bzw. Wechselintervall	Kosten Entsorgung			
Ersatzfilter	Ggf. thermische Verwertung			
• Lohn				

Nachfolgender Vergleich zeigt für konstruktiv baugleiche Luftfilter mit unterschiedlichen Medien die erheblich abweichenden Lebenszykluskosten.

Medium 1 - Synthetisches Filtermedium mit elektrostatischer Ladung

Niedriger Anschaffungskosten / kurze Standzeit / hoher Energieverbrauch


Medium 2 - Glasfasermedium

Mittlere Anschaffungskosten / gute Standzeit / niedriger Energieverbrauch

Medium 3 - Synthetisches Filtermedium mit hohem Feinfaseranteil und ohne elektrostatische Ladung

Hohe Anschaffungskosten / gute Standzeit / optimierter Energieverbrauch (besser als Glasfaser)

Filter	Medium 1		Medium 2		Medium 3				
			В		Α		Medium 1	Medium 2	Medium 3
Anschaffungs- und Einbaukosten Purchase and installation costs	45,00	[€]	55,00	[€]	65,00	[€]	45.00		
Austauschkosten für 1 Jahr Costs for filter exch. within 1 year	0,00	[€]	0,00	[€]	0,00	[€]	10,00	55.00	
Entsorgungskosten für 1 Jahr Disposal costs within 1 year	0,00	[€]	0,00	[€]	0,00	[€]	252,47		65,00
Energiekosten für 1 Jahr Energy costs within 1 year	252,47	[€]	163,93	[€]	130,13	[€]		163,93	130,13
LCC für 1 Jahr / LCC for 1 year	297,47	[€]	218,93	[€]	195,13	[€]		Währung: Euro [€] EUR	
Anschaffungs- und Einbaukosten Purchase and installation costs	45,00	[€]	55,00	[€]	65,00	[€]			
Austauschkosten für 5 Jahre Costs for filter exch. within 5 years	168,38	[€]	205,80	[€]	243,22	[€]	219,00		
Entsorgungskosten für 5 Jahre Disposal costs within 5 years	5,61	[€]	5,61	[€]	5,61	[€]	1.309,51	266,42	313,83
Energiekosten für 5 Jahre Energy costs within 5 years	1.309,51	[€]	850,25	[€]	674,94	[€]		850,25	674,94
LCC für 5 Jahre / LCC for 5 years	1.528,51	[€]	1.116,67	[€]	988,77	[€]		Währung: Euro [€]EUR	
Anschaffungs- und Einbaukosten Purchase and installation costs	45,00	[€]	55,00	[€]	65,00	[€]	375,27		
Austauschkosten für 10 Jahre Costs for filter exch. within 10 years	319,61	[€]	390,64	[€]	461,66	[€]		456,29	
Entsorgungskosten für 10 Jahre Disposal costs within 10 years	10,65	[€]	10,65	[€]	10,65	[€]	2.743,52		537,32
Energiekosten für 10 Jahre Energy costs within 10 years	2.743,52	[€]	1.781,33	[€]	1.414,04	[€]		1.781,33	1.414,04
LCC für 10 Jahre / LCC for 10 years	3.118,78	[€]	2.237,63	[€]	1.951,36	[€]		Währung: Euro [€] EUR	

5.4 Maßnahmen bewertet bzgl. ROI und Energieeinsparung

5.4.1 Kriterium: Kurzfristiger ROI (≤ 1 Jahre/≤ 3 Jahre)

Gewerk	Maßnahme	E	Einsparung in % und ROI in Jahren			
		≤ 3%	≤ 5%	≤ 10%	> 10%	
Wärme	Anpassung der Anschluss- und Heizleistung				≤ 1	
Lüftung/ Klima	Anpassung von Betriebszeiten (RLT-Anlage)				≤ 1	
Lüftung/ Klima	Anpassung von Volumenströmen an den tatsächlichen Bedarf				≤ 1	
Allgemein	Anpassung der Raumtemperaturen			≤ 1		
Wärme	Anpassung der Betriebszeiten (Heizungsanlage)			≤ 1		
Wasser	Optimierung von Druckerhöhungsanlagen		≤ 1			
Wärme	Anpassung der Kessel- und Heizkreistem- peraturen		≤ 1			
Lüftung/ Klima	Anpassung der Befeuchtungsgrenzen		≤ 1			
Kälte	Abschalten von Kälteanlagen in saisonal bedingten Nichtnutzungszeiten		≤1			
Elektro	Anpassung der Betriebszeiten (Beleuchtungsanlage)		≤1			
Wärme	Saisonale Abschaltung von Heizkesseln	≤ 1				
Wärme	Anpassung der Trinkwassertemperaturen	≤ 1				
Lüftung/ Klima	Austausch von Luftfiltern	≤ 1				
Lüftung/ Klima	Nutzung von Nachtlüftung (freie Lüftung)	≤ 1				
Allgemein	Effiziente Anwendung und Ausführung des Energiemanagements			≤ 3		
Kälte	Anpassung der Kaltwasser-Systemtem- peraturen		≤3			
Elektro	Überprüfung von Lastprofilen		≤3			
Elektro	Einsatz einer Blindstromkompensation		≤ 3			
Wärme	Abschaltung bzw. Dezentralisierung der Trinkwasserbereitung	≤ 3				

5.4.2 Kriterium: Mittelfristiger ROI (≤ 5 Jahre)

Gewerk	Maßnahme	Einsparung in % und ROI in Jahren			ıd
		≤ 3%	≤ 5%	≤ 10%	> 10%
Wärme	Einsatz geregelter Pumpen				≤ 5
Wärme	Dämmung wärmeführender Rohrleitungen				≤ 5

Gewerk	Maßnahme	Einsparung in % und ROI in Jahren			
		≤ 3%	≤ 5%	≤ 10%	> 10%
Lüftung/ Klima	Einsatz energieeffizienter Ventilatoren				≤ 5
Lüftung/ Klima	Kontrolle vorhandener Mischluftklappen				≤ 5
Kälte	Nutzung der freien Kühlung (Free-Cooling)				≤ 5
Kälte	Effizientere Kühlung von Serverräumen				≤ 5
Elektro	Einsatz von Lastmanagementsystemen				≤ 5
Prozess	Optimierung der Druckluftversorgung				≤ 5
Wärme	Einsatz von Thermostatventilen			≤ 5	
Lüftung/ Klima	Bedarfsabhängige Regelung des Volumenstroms (RLT-Anlage)			≤ 5	
Lüftung/ Klima	Wärmedämmung von Luftleitungen			≤ 5	
Aufzug	Optimierung der Aufzugstechnik			≤ 5	

5.4.3 Kriterium: Langfristiger ROI (≤ 10 Jahre/> 10 Jahre)

Gewerk	Maßnahme	E	•	g in % un Jahren	d
		≤ 3%	≤ 5%	≤ 10%	> 10%
Bauwerk	Einsatz von Beschattungssystemen				≤ 10
Wärme	Nutzung energieeffizienter Heizkesselanlagen				≤ 10
Wärme	Einsatz effizienter Hallenheizsysteme				≤ 10
Lüftung/ Klima	Einsatz von Wärmetauschern				≤ 10
Lüftung/ Klima	Einsatz von adiabatischen Befeuchtern (Verdunstungskühler)				≤ 10
Kälte	Nutzung natürlicher Kältequellen zur Kaltwasserversorgung				≤ 10
Elektro	Einsatz von Blockheizkraftwerken				≤ 10
Elektro	Optimierung des Beleuchtungssystems				≤ 10
Elektro	Einsatz von Präsenzmeldern und tageslichtabhängigen Beleuchtungssystemen				≤ 10
Wasser	Einsatz wassersparender Systeme			≤ 10	
Wärme	Nutzung von Abwärme			≤ 10	
Wärme	Nutzung von Abwärme zur Vorerwärmung von Warmwasser			≤ 10	
Kälte	Austausch des Rückkühlwerkes			≤ 10	
Wasser	Regen- und Brunnenwassernutzung		≤ 10		
Kälte	Einsatz von Kältespeichern		≤ 10		

Gewerk	Maßnahme	Einsparung in % und ROI in Jahren			
		≤ 3%	≤ 5%	≤ 10%	> 10%
Bauwerk	Bauphysikalische Maßnahmen, Ertüchtigung der Gebäudehülle				> 10
Wärme	Einsatz alternativer Energieträger - Wärme- pumpe				> 10
Wärme	Einsatz alternativer Energieträger - Holz- heizkessel				> 10
Kälte	Einsatz energieeffizienter Kältemaschinen				> 10
Elektro	Betrieb einer Photovoltaikanlage				> 10
Wärme	Einsatz alternativer Energieträger - Solar- thermische Anlagen			> 10	

6 Fachunternehmen – Partner mit Kompetenz und Lösungsansätzen

Die Arbeitsgemeinschaft Instandhaltung Gebäudetechnik (AIG) ist ein Zusammenschluss von Unternehmen, die ein breites Spektrum hochqualifizierter technischer Dienstleistungen im Bereich der Instandhaltung – Wartung, Inspektion und Instandsetzung – anbieten und/oder im Gebäude- und Facility Management tätig sind. Ihr Leistungsportfolio schließt das Betreiben und Optimieren von technischen Anlagen, die Anlagenmodernisierung, das Energiemanagement sowie das Performance Contracting ein.

Mitglieder sind sowohl kleine und mittelständische Unternehmen (KMU) als auch Geschäftsbereiche großer, global agierender Unternehmen.

Kernkompetenzen der Unternehmen sind:

- Instandhaltung (Wartung/Inspektion/Instandsetzung)
- Betrieb von Gebäuden und technischer Anlagen
- Betreiberverantwortung
- Energieeffizienz gebäudetechnischer Systeme und Komponenten
- Energetische Inspektion
- Umfang und Beschreibung von Dienstleistungen
- Industrielle Dienstleistungen

Die Qualität und das Wissen im Unternehmen werden durch geplante, am Bedarf und den Kundenanforderungen orientierte Personalqualifikation und Weiterbildung gewährleistet. Die AIG ist Schulungsträger zur Gebäudetechnik und Schulungspartner des VDI.

Die Mitglieder der Arbeitsgemeinschaft Instandhaltung Gebäudetechnik (AIG) im VDMA sind als erfahrene Fachunternehmen Partner und Dienstleister für den qualifizierten und effizienten Anlagenbetrieb und die Instandhaltung.

Bildnachweis:

Seite 5 und 8 technowart Technisches Gebäudemanagement GmbH, Köln

Seite 10 Trox GmbH, Neukirchen-Vluyn

Arbeitsgemeinschaft Instandhaltung Gebäudetechnik (AIG) im Fachverband Allgemeine Lufttechnik des VDMA Verband Deutscher Maschinen- und Anlagenbau e.V.

Lyoner Str. 18, 60528 Frankfurt am Main

Telefon: 0 69/66 03-14 89, Telefax: 0 69/66 03-24 89 E-Mail: aig@vdma.org, Internet: http://aig.vdma.org/

Ausgabe: November 2016

© Arbeitsgemeinschaft Instandhaltung Gebäudetechnik (AIG)

Jede Art der Vervielfältigung, auch auszugsweise, ist nur mit Genehmigung der Arbeitsgemeinschaft Instandhaltung Gebäudetechnik (AIG) gestattet.