
 VDMA Specification D r a f t June 2025

F O U N D A T I O N

®

VDMA 40010-1

ICS 25.040.30; 35.240.50 Comments by 2025-08-01
 Intended to replace
 VDMA 40010-1:2019-07

OPC UA for Robotics –
Part 1: Vertical Integration

OPC UA für Robotik –
Teil 1: Vertikale Integration

Application Warning Notice

This draft with date of issue 2025-04-25 is being submitted to the public for review and comment.

Because the final VDMA Specification may differ from this version, the application of this draft is subject to special
agreement.

Comments are requested

– preferably as a file by e-mail to suprateek.banerjee@vdma.org

– or in paper form to VDMA e.V. ,
Lyoner Straße 18, 60528 Frankfurt.

Document comprises 127 pages

VDMA

© All rights reserved to VDMA e.V., Frankfurt/Main – Modification, amendment, editing, translation, copying and/or circulation only with
permission in writing from VDMA e.V.

Draft VDMA 40010-1:2025-06

VDMA 40010-1:2025-06 is identical with OPC 40010-1 (Release Candidate
1.01)

Page 2
Draft VDMA 40010-1:2025-06

Contents

Page

Foreword ... 14

1 Scope ... 16

2 Normative references ... 16

3 Terms, definitions, and conventions .. 17

3.1 Overview .. 17

3.2 Terms ... 17

3.3 Abbreviations .. 19

3.4 Conventions used in this document ... 19

3.4.1 Conventions for Node descriptions .. 19

3.4.2 NodeIds and BrowseNames .. 21

3.4.3 Common Attributes .. 21

4 General information to OPC Robotics and OPC UA ... 24

4.1 Introduction to OPC Robotics ... 24

4.2 Introduction to OPC Unified Architecture .. 25

4.2.1 What is OPC UA? .. 25

4.2.2 Basics of OPC UA ... 25

4.2.3 Information modelling in OPC UA ... 26

5 Use Cases .. 29

6 OPC Robotics Information Model overview ... 30

7 OPC UA ObjectTypes ... 33

7.1 MotionDeviceSystemType ObjectType Definition ... 33

7.1.1 Overview .. 33

7.1.2 MotionDeviceSystemType definition .. 33

7.2 MotionDeviceType ObjectType Definition .. 34

7.2.1 Overview .. 34

7.2.2 MotionDeviceType definition ... 35

7.3 AxisType ObjectType Definition ... 37

7.3.1 Overview .. 37

7.3.2 AxisType definition ... 38

7.4 PowerTrainType ObjectType Definition ... 39

7.4.1 Overview .. 39

7.4.2 PowerTrainType definition... 40

7.5 MotorType ObjectType Definition ... 40

7.5.1 Overview .. 40

7.5.2 MotorType definition .. 41

7.6 GearType Definition .. 42

Page 3
 Draft VDMA 40010-1:2025-06

7.6.1 Overview ... 42

7.6.2 GearType definition ... 44

7.7 SafetyStateType ObjectType Definition .. 44

7.7.1 Overview ... 44

7.7.2 SafetyStateType definition ... 45

7.8 EmergencyStopFunctionType ObjectType Definition ... 46

7.8.1 Overview ... 46

7.8.2 EmergencyStopFunctionType definition .. 46

7.9 ProtectiveStopFunctionType ObjectType Definition ... 47

7.9.1 Overview ... 47

7.9.2 ProtectiveStopFunctionType definition .. 47

7.10 OperationStateMachineType Definition .. 48

7.10.1 Start Method ... 52

7.10.2 Stop Method ... 53

7.11 SystemOperationType ObjectType .. 54

7.11.1 Overview ... 54

7.11.2 SystemOperationType definition ... 54

7.12 SystemOperationStateMachineType ... 55

7.12.1 Start Method ... 59

7.12.2 Stop Method ... 60

7.12.3 GetReady Method .. 61

7.12.4 StandDown Method ... 62

7.13 IdleSubstateMachineType .. 62

7.13.1 Overview ... 63

7.14 ExecutingSubstateMachineType ... 65

7.14.1 Overview ... 65

7.15 TaskControlOperationType ObjectType ... 67

7.15.1 Overview ... 67

7.16 TaskControlStateMachineType .. 68

7.16.1 Overview ... 69

7.16.2 LoadByNodeId Method ... 73

7.16.3 LoadByName Method .. 74

7.16.1 UnloadProgram Method .. 75

7.16.2 UnloadByNodeId Method .. 75

7.16.3 UnloadByName Method .. 76

7.16.4 Start Method ... 77

7.16.5 Stop Method ... 78

7.17 ReadySubstateMachineType .. 79

7.17.1 Overview ... 80

Page 4
Draft VDMA 40010-1:2025-06

7.17.2 ResetToProgramStart Method ... 81

7.18 ControllerType ObjectType Definition .. 82

7.18.1 Overview .. 82

7.18.2 ControllerType definition ... 83

7.19 AuxiliaryComponentType ObjectType Definition .. 86

7.19.1 Overview .. 86

7.19.2 AuxiliaryComponentType definition ... 86

7.20 DriveType ObjectType Definition .. 87

7.20.1 Overview .. 87

7.20.2 DriveType definition ... 87

7.21 TaskControlType ObjectType Definition .. 87

7.21.1 Overview .. 87

7.21.2 TaskControlType definition ... 89

7.22 TaskModuleType ObjectType Definition .. 89

7.22.1 Overview .. 89

7.22.2 TaskModuleType definition ... 90

7.23 LoadType ObjectType Definition .. 90

7.23.1 Overview .. 90

7.23.2 LoadType definition .. 91

7.24 UserType ObjectType Definition ... 91

7.24.1 Overview .. 91

7.24.2 UserType definition .. 92

8 OPC UA ReferenceTypes ... 92

8.1 General ... 92

8.2 Controls (IsControlledBy) Reference Type .. 93

8.3 Moves (IsMovedBy) Reference Type .. 93

8.4 Requires (IsRequiredBy) Reference Type .. 94

8.5 IsDrivenBy (Drives) Reference Type ... 94

8.6 IsConnectedTo Reference Type .. 95

8.7 HasSafetyStates (SafetyStatesOf) Reference Type .. 95

8.8 HasSlave (IsSlaveOf) Reference Type .. 95

9 OPC UA EventTypes ... 96

9.1 MultiAcknowledgeableConditionType .. 96

10 OPC UA DataTypes ... 97

10.1 MotionDeviceCategoryEnumeration ... 97

10.2 AxisMotionProfileEnumeration ... 97

10.3 ExecutionModeEnumeration .. 98

10.4 OperationalModeEnumeration... 98

11 Profiles and ConformanceUnits .. 99

Page 5
 Draft VDMA 40010-1:2025-06

11.1 Conformance Units ... 99

11.2 Profiles ... 102

11.2.1 Profile list ... 102

11.2.2 Server Facets ... 102

12 Namespaces ... 104

12.1 Namespace Metadata .. 104

12.2 Handling of OPC UA Namespaces ... 104

Annex A (normative) OPC UA for Robotics Namespace and mappings .. 106

A.1 Namespace and identifiers for Robotics Information Model .. 106

A.2 Capability Identifier ... 106

Annex B (informative) Examples ... 107

B.1 Overview ... 107

B.2 Example for motion device systems ... 107

B.3 Examples for motion devices and controllers in a motion device system 107

B.4 Examples for motion devices ... 107

B.5 Examples of combinations of motion devices in a motion device system 111

B.6 Axes and power trains .. 112

B.7 Virtual Axes .. 113

B.8 Examples for axes and power trains ... 113

B.9 Examples for the use of references regarding axes and power trains .. 113

B.9.1 Example articulated six-axis industrial robot. .. 113

B.9.2 Example articulated six-axis industrial robot with 3 leader-follower axes 115

B.9.3 Example linear two-dimensional motion device .. 116

B.10 Representations of exemplary server implementations ... 117

B.10.1 ObjectTypes and references used with DriveType instances .. 117

B.10.2 ObjectTypes and references used with instances of vendor specific subtypes of
BaseObjectType for drive-channels .. 119

B.10.3 ObjectTypes and references used with instances DriveType for drives with drive-channels .. 120

B.10.4 ObjectTypes and references used with instances of vendor specific subtypes of
BaseObjectType for motor-integrated-drives ... 121

B.10.5 Abstract example of a six-axis robot with master-slave axis and drive-slots 122

B.10.6 Abstract example of a motion device system with three motion devices 123

Annex C (informative) Usage with OPC 40001-1 UA CS for Machinery Part 1 – Basic Building Blocks
 ... 124

C.1 Overview ... 124

C.2 Identification and Finding Machines ... 124

C.3 Component Identification and Finding Components of a Machine ... 126

Page 6
Draft VDMA 40010-1:2025-06

Figures

Figure 1 – OPC UA standard definitions ... 23
Figure 2 – OPC UA and additional definitions ... 23
Figure 3 – The Scope of OPC UA within an Enterprise .. 25
Figure 4 – A Basic Object in an OPC UA Address Space ... 26
Figure 5 – The Relationship between Type Definitions and Instances ... 27
Figure 6 – Examples of References between Objects .. 28
Figure 7 – The OPC UA Information Model Notation .. 28
Figure 8 – Communication structure with OPC UA ... 30
Figure 9 – OPC Robotics describes the semantic self-description. .. 30
Figure 10 – OPC Robotics top level view. ... 31
Figure 11 – OPC Robotics overview. .. 32
Figure 12 – Overview MotionDeviceSystemType .. 33
Figure 13 – Overview MotionDeviceType .. 35
Figure 14 – Overview AxisType ... 38
Figure 15 – Overview PowerTrainType ... 39
Figure 16 – Overview MotorType .. 41
Figure 17 – Overview GearType .. 43
Figure 18 – Overview SafetyStateType ... 45
Figure 19 – OperationStateMachine. ... 48
Figure 20 – The OperationStateMachineType .. 48
Figure 21 – SystemOperationType Overview .. 54
Figure 22– SystemOperationStateMachine. ... 56
Figure 23 – SystemOperationStateMachineType... 56
Figure 24 – IdleSubstateMachine .. 63
Figure 25 – IdleSubstateMachineType Overview .. 63
Figure 26 – ExecutingSubstateMachine .. 65
Figure 27 – ExecutingSubstateMachineType Overview .. 65
Figure 28 – TaskControlOperationType Overview .. 67
Figure 29 – TaskControl State Machine with ReadySubstateMachine in Ready State 69
Figure 30 – TaskControlStateMachineType with the ReadySubstateMachine ... 69
Figure 31 – ReadySubstateMachine ... 79
Figure 32 – ReadySubstateMachineType Overview ... 80
Figure 33 – Overview ControllerType .. 83
Figure 34 – Overview AuxiliaryComponentType ... 86
Figure 35 – Overview DriveType... 87
Figure 36 – Overview TaskControlType .. 88
Figure 37 – Overview LoadType.. 90
Figure 38 – Overview UserType .. 92
Figure 39 – Reference Type Hierarchy ... 93
Figure 40 – MultiAcknowledgeableConditionType .. 96
Figure B.1 – Cartesian manipulator ... 108
Figure B.2 – Portal manipulator ... 108
Figure B.3 – Stewart platform or Hexapod .. 109
Figure B.4 – Delta robot ... 109

Page 7
 Draft VDMA 40010-1:2025-06

Figure B.5 – Scara robot .. 110
Figure B.6 – Articulated robot ... 110
Figure B.7 – Schematic of a humanoid robot ... 111
Figure B.8 – Motion device system 1 ... 111
Figure B.9 – Motion device system 2 ... 112
Figure B.10 – Axis and power train coupling .. 113
Figure B.11 – Coupling references for a typical six-axis industrial robot. .. 114
Figure B.12 – Coupling references for a six-axis industrial robot with leader-follower axes 115
Figure B.13 – Coupling references for a simple linear two-dimensional motion device 116
Figure B.14 – Coupling references for linear two-dimensional motion device ... 117
Figure B.15 – IsDrivenby references to DriveType instances .. 118
Figure B.16 – IsDrivenby references to vendor specific subtypes of BaseObjectType instances 119
Figure B.17 – IsDrivenby references to DriveType instances for multi-slot drives w/o slots 120
Figure B.18 – IsDrivenby used with motor-integrated-drives ... 121
Figure B.19 – View on a six-axis robot with master-slave and drive-slots ... 122
Figure B.20 – View on a motion device system with 3 motion devices controlled by one controller 123
Figure C.1 – Example Finding all Machines and Machine Identification .. 125
Figure C.2 – Example Finding all Machines and Components and Component Identification 127

Page 8
Draft VDMA 40010-1:2025-06

Tables

Table 1 – Terms and definitions .. 17
Table 2 – Abbreviations and definitions ... 19
Table 3 – Examples of Data Types.. 20
Table 4 – Type Definition Table ... 20
Table 5 – Common Node Attributes .. 21
Table 6 – Common Object Attributes .. 22
Table 7 – Common Variable Attributes .. 22
Table 8 – Common VariableType Attributes .. 22
Table 9 – Common Method Attributes ... 23
Table 10 – Description of additional definitions ... 24
Table 11 – MotionDeviceSystemType Definition ... 33
Table 12 – MotionDeviceSystemType Additional Subcomponents ... 34
Table 13 – MotionDeviceType Definition ... 36
Table 14 – MotionDeviceType Additional Subcomponents ... 36
Table 15 – AxisType Definition .. 38
Table 16 – AxisType Additional Subcomponents .. 38
Table 17 – PowerTrainType Definition .. 40
Table 18 – MotorType Definition.. 41
Table 19 – MotorType Additional Subcomponents.. 42
Table 20 – GearType Definition ... 44
Table 21 – SafetyStateType Definition .. 45
Table 22 – SafetyStateType Additional Subcomponents .. 46
Table 23 – EmergencyStopFunctionType Definition ... 46
Table 24 – ProtectiveStopFunctionType Definition ... 47
Table 25 – Door Interlock Protective Stop Example .. 47
Table 26 – Teach Pendant Enabling Device Protective Stop Example... 48
Table 27 – OperationStateMachineType Definition ... 49
Table 28 – OperationStateMachineType State Descriptions .. 49
Table 29 – Values for LastTransitionReason .. 49
Table 30 – OperationStateMachineType Attribute values for child nodes .. 50
Table 31 – PossibleStopMode Array Values ... 50
Table 32 – OperationStateMachineType Attribute values for child nodes .. 51
Table 33 – OperationStateMachineType Transition Descriptions ... 51
Table 34 – OperationStateMachineType Additional References .. 52
Table 35 – OperationStateMachineType Attribute values for child Nodes .. 52
Table 36 – Start Method Arguments .. 53
Table 37 – Method Result Codes (defined in Call Service) ... 53
Table 38 – Start Method AddressSpace definition. ... 53
Table 39 –Stop Method Arguments ... 53
Table 40 - Method Result Codes (defined in Call Service) ... 53
Table 41 – Stop Method AddressSpace definition. ... 54
Table 42 – SystemOperationType Definition ... 55
Table 43 – SystemOperationType additional subcomponents .. 55
Table 44 – SystemOperationType Attribute values for child Nodes .. 55

Page 9
 Draft VDMA 40010-1:2025-06

Table 45 – SystemOperationStateMachineType Definition ... 57
Table 46 – SystemOperationStateMachineType Additional Subcomponents ... 57
Table 47 – SystemOperationStateMachineType State Descriptions ... 58
Table 48 – SystemOperationStateMachine Transition Descriptions .. 58
Table 49 – SystemOperationStateMachineType Additional References ... 58
Table 50 – SystemOperationStateMachineType Attribute values for child Nodes .. 59
Table 51 – Start Method Arguments .. 59
Table 52 - Method Result Codes (defined in Call Service) .. 59
Table 53 – Start Method AddressSpace definition. .. 60
Table 54 – Stop Method Arguments ... 60
Table 55 - Method Result Codes (defined in Call Service) .. 60
Table 56 – Stop Method AddressSpace definition. .. 61
Table 57 – GetReady Method Arguments .. 61
Table 58 - Method Result Codes (defined in Call Service) .. 61
Table 59 – GetReady Method AddressSpace definition .. 61
Table 60 – StandDown Method Arguments ... 62
Table 61 - Method Result Codes (defined in Call Service) .. 62
Table 62 – StandDown Method AddressSpace definition .. 62
Table 63 – IdleSubstateMachineType Definition .. 63
Table 64 – IdleSubstateMachineType Attribute values for child nodes ... 64
Table 65 – IdleSubstateMachineType State Descriptions ... 64
Table 66 – IdleSubstateMachineType Transition Descriptions .. 64
Table 67 – IdleSubstateMachineType Additional References ... 64
Table 68 – IdleSubstateMachineType Attribute values for child Nodes ... 65
Table 69 – ExecutingSubstateMachine Type Definition ... 66
Table 70 – ExecutingSubstateMachineType Attribute values for child nodes ... 66
Table 71 – ExecutingSubstateMachineType State Descriptions ... 66
Table 72 – ExecutingSubstateMachineType Transition Descriptions .. 66
Table 73 – ExecutingSubstateMachineType Additional References ... 67
Table 74 – ExecutingSubstateMachineType Attribute values for child Nodes ... 67
Table 75 – TaskControlOperationType Definition .. 68
Table 76 – TaskControlOperationType Attribute values for child Nodes ... 68
Table 77 – TaskControlStateMachineType Definition .. 70
Table 78 – TaskControlStateMachineType Additional Subcomponents .. 70
Table 79 – TaskControlStateMachineType State Descriptions .. 71
Table 80 – TaskControlStateMachineType Transition Descriptions .. 71
Table 81 – TaskControlStateMachineType Additional References.. 72
Table 82 – TaskControlStateMachineType Attribute values for child Nodes ... 72
Table 83 – LoadByNodeId Method Arguments .. 73
Table 84 - Method Result Codes (defined in Call Service) .. 73
Table 85 – LoadByNodeId Method AddressSpace definition... 74
Table 86 – LoadByName Method Arguments .. 74
Table 87 - Method Result Codes (defined in Call Service) .. 74
Table 88 – LoadByName Method AddressSpace definition ... 74
Table 89 – UnloadProgram Method Arguments ... 75
Table 90 - Method Result Codes (defined in Call Service) .. 75
Table 91 – UnloadProgram Method AddressSpace definition ... 75

Page 10
Draft VDMA 40010-1:2025-06

Table 92 – UnloadByNodeId Method Arguments .. 76
Table 93 - Method Result Codes (defined in Call Service) ... 76
Table 94 – UnloadByNodeId Method AddressSpace definition .. 76
Table 95 – UnloadByName Method Arguments .. 76
Table 96 - Method Result Codes (defined in Call Service) ... 77
Table 97 – UnloadByName Method AddressSpace definition .. 77
Table 98 – Start Method Arguments .. 77
Table 99 - Method Result Codes (defined in Call Service) ... 78
Table 100 – Start Method AddressSpace definition. ... 78
Table 101 – StopMethod Arguments ... 78
Table 102 – Method Result Codes (defined in Call Service) ... 79
Table 103 – Stop Method AddressSpace definition. ... 79
Table 104 – ReadySubstateMachineType Definition .. 80
Table 105 – ReadySubstateMachineType Attribute values for child nodes .. 80
Table 106 – ReadySubstateMachineType State Descriptions .. 81
Table 107 – ReadySubstateMachineType Additional References .. 81
Table 108 – ReadySubstateMachineType Transition Descriptions ... 81
Table 109 – ReadySubstateMachineType Attribute values for child Nodes ... 81
Table 110 – ResetToProgramStart Method Arguments .. 82
Table 111 - Method Result Codes (defined in Call Service) ... 82
Table 112 – ResetToProgramStart Method AddressSpace definition.. 82
Table 113 – ControllerType Definition ... 84
Table 114 – ControllerType Additional Subcomponents ... 84
Table 115 – TypeDefinition of Components of ControllerType ... 85
Table 116 – AuxiliaryComponentType Definition .. 86
Table 117 – DriveType Definition .. 87
Table 118 – TaskControlType Definition ... 89
Table 119 – TaskControlType Additional Subcomponents ... 89
Table 120 – TaskModuleType Definition ... 90
Table 121 – LoadType Definition ... 91
Table 122 – LoadType possible degrees of modelling .. 91
Table 123 – UserType Definition ... 92
Table 124 – Controls Reference Definition .. 93
Table 125 – Moves Reference Definition .. 94
Table 126 – Requires Reference Definition ... 94
Table 127 – Drives Reference Definition ... 94
Table 128 – IsConnectedTo Reference Definition... 95
Table 129 – HasSafetyStates Reference Definition .. 95
Table 130 – HasSlave Reference Definition .. 95
Table 131 – MultiAcknowledgeableConditionType Definition ... 96
Table 132 – MotionDeviceCategoryEnumeration Items .. 97
Table 133 – MotionDeviceCategoryEnumeration definition .. 97
Table 134 – AxisMotionProfileEnumeration .. 97
Table 135 – AxisMotionProfileEnumeration definition ... 98
Table 136 – ExecutionModeEnumeration ... 98
Table 137 – ExecutionModeEnumeration definition .. 98
Table 138 – OperationalModeEnumeration ... 99

Page 11
 Draft VDMA 40010-1:2025-06

Table 139 – OperationalModeEnumeration definition .. 99
Table 140 – Conformance Units for Robotics .. 100
Table 141 – Profile URIs for OPC UA for Robotics .. 102
Table 142 – Robotics Base Server Facet ... 102
Table 143 – Robotics MDS Operation Server Facet .. 103
Table 144 – Robotics AM Extended Server Facet ... 103
Table 145 – Robotics CM Extended Server Facet ... 104
Table 146 – NamespaceMetadata Object for this Document .. 104
Table 147 – Namespaces used in a OPC Robotics Server. .. 105
Table 148 – Namespaces used in this document. ... 105

Page 12
Draft VDMA 40010-1:2025-06

OPC Foundation / VDMA

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

• This document is provided "as is" by the OPC Foundation and VDMA.

• Right of use for this specification is restricted to this specification and does not grant rights of use for referred documents.

• Right of use for this specification will be granted without cost.

• This document may be distributed through computer systems, printed or copied as long as the content remains unchanged and
the document is not modified.

• OPC Foundation and VDMA do not guarantee usability for any purpose and shall not be made liable for any case using the
content of this document.

• The user of the document agrees to indemnify OPC Foundation and VDMA and their officers, directors and agents harmless from
all demands, claims, actions, losses, damages (including damages from personal injuries), costs and expenses (including
attorneys' fees) which are in any way related to activities associated with its use of content from this specification.

• The document shall not be used in conjunction with company advertising, shall not be sold or licensed to any party.

• The intellectual property and copyright is solely owned by the OPC Foundation and VDMA.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC or VDMA
specifications may require use of an invention covered by patent rights. OPC Foundation or VDMA shall not be
responsible for identifying patents for which a license may be required by any OPC or VDMA specification, or
for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention.
OPC or VDMA specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OPC FOUDATION NOR VDMA MAKES NO WARRANTY OF ANY KIND,
EXPRESSED OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OPC
FOUNDATION NOR VDMA BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF
PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is
subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph
(c)(1)(i) of the Rights in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as
applicable. Contractor / manufacturer are the OPC Foundation, 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ,
85260-1830

COMPLIANCE

The combination of VDMA and OPC Foundation shall at all times be the sole entities that may authorize
developers, suppliers and sellers of hardware and software to use certification marks, trademarks or other
special designations to indicate compliance with these materials as specified within this document. Products
developed using this specification may claim compliance or conformance with this specification if and only if the
software satisfactorily meets the certification requirements set by VDMA or the OPC Foundation. Products that
do not meet these requirements may claim only that the product was based on this specification and must not
claim compliance or conformance with this specification.

TRADEMARKS

Page 13
 Draft VDMA 40010-1:2025-06

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks
have not been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity
and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of Germany.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any
prior understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

If an error or problem is found in this specification, the UaNodeSet, or any associated supplementary files, it should be
reported as an issue.

The reporting process can be found here: https://opcfoundation.org/resources/issue-tracking/

The Link to the issue tracking project for this document is here:

https://mantis.opcfoundation.org/set_project.php?project_id=<nnn>&make_default=no

<nnn> is the project_id in Mantis which is created for any document when requested by the working group.
Example: https://mantis.opcfoundation.org/set_project.php?project_id=142&make_default=no is the Link for
OPC 40001-* (Machinery).

If you have no Mantis Project or do not know the project_id, please send a request to
TechnicalDirector@opcfoundation.org.

https://opcfoundation.org/resources/issue-tracking/
https://mantis.opcfoundation.org/set_project.php?project_id=%3cnnn%3e&make_default=no
https://mantis.opcfoundation.org/set_project.php?project_id=142&make_default=no
mailto:TechnicalDirector@opcfoundation.org

Page 14
Draft VDMA 40010-1:2025-06

Foreword

Compared with the previous versions, the following changes have been made:

Version Changes

OPC 40010-1 1.00 Initial release

OPC 40010-1 1.01 Mantis Issue ID: 5204
Problem: Fig 10 Robotics Top Level Overview
Component Type Incorrect Inheritance
Resolution: Figure adapted

Mantis Issue ID: 5203
Problem: Figures B15-B20 -> “IsConnectedTo”
Reference with wrong arrows
Resolution: Figures adapted

Mantis Issue ID: 5331
Problem: Figure B20 describes 2 x MotionDevice 2
Resolution: Figure adapted

Mantis Issue ID: 5729
Problem: Typo in Table A.1
Resolution: Typo corrected

Mantis Issue ID: 6079
Problem: References PowerTrains/Axis are wrong in
Figure B.20 and B.19
Resolution: Figures adapted

Mantis Issue ID: 6629
Problem: Object has invalid Parent Reference
Resolution: IsConnectedTo reference deleted in
MotorType and GearType, description of use of
reference described in PowerTrainType
NodeSet Version V1.00.01

Usage: VDMA Machinery Building Blocks for
Identification
Resolution: Added Profile for use of Robotics and
Machinery Identification
Usage examples added in Annex.

Added Remote Operation Capabilities via AddIns and
State Machines for System and Task Control
Operation.

This specification was created by a joint working group of the OPC Foundation and VDMA.

OPC Foundation

OPC is the interoperability standard for the secure and reliable exchange of data and information in the industrial
automation space and in other industries. It is platform independent and ensures the seamless flow of
information among devices from multiple vendors. The OPC Foundation is responsible for the development and
maintenance of this standard.

OPC UA is a platform independent service-oriented architecture that integrates all the functionality of
the individual OPC Classic specifications into one extensible Framework. This multi -layered approach
accomplishes the original design specification goals of:

– Platform independence: allows manufacturers independent exchange of information.

– Scalable: from an embedded microcontroller to a cloud-based infrastructure

Page 15
 Draft VDMA 40010-1:2025-06

– Secure: encryption, authentication, authorization, and auditing

– Expandable: ability to add new features including transports without affecting existing applications

– Comprehensive information modelling capabilities: for defining any model from simple to complex.

VDMA Robotics Initiative

The VDMA is the biggest mechanical engineering industry association in Europe and represents over
3,200 mainly small and medium size member companies in the engineering industry, making it one of
the largest and most important industrial associations in Europe. As part of the VDMA Robotics +
Automation association, VDMA Robotics unites more than 75 members: companies offering robots,
components of a robot, control units and motion device system integrations. The objective of this
industry-driven platform is to support the robotics industry through a wide spectrum of activities and
services such as standardization, statistics, marketing, public relations, trade fair policy, networking
events and representation of interests.

Under the auspices of VDMA, a companion specification for robotics is developed by leading robot
manufacturers and users within the "VDMA OPC Robotics Initiative". This Working Group has the status of an
international joint working group with worldwide lead to develop a companion specification for robotics and is
supported by the OPC Foundation. The aim is to create an information model with object types, which enables
the modelling of robotic systems according to OPC UA as an interface for higher-level control and evaluation
systems (plant control, MES, cloud). Not included are "application-related" interfaces, that can also be modelled
via OPC UA. These interfaces are defined in further working groups for OPC UA Companion Specifications
(e.g. EUROMAP 79, Integrated Assembly Solutions (e.g. gripper), Machine Vision).

The VDMA Robotics Initiative is a working group within VDMA Robotics and was formed for the creation
of this companion specification. The following members were actively involved in creating this
document:

– ABB Automation GmbH

– Beckhoff Automation GmbH & Co. KG

– ENGEL AUSTRIA GmbH

– EPSON Deutschland GmbH

– fortiss – Forschungsinstitut des Freistaats Bayern

– Fraunhofer IGCV

– KEBA AG

– KraussMaffei Automation GmbH

– KUKA Deutschland GmbH

– Mitsubishi Electric Europe B.V.

– SIEMENS AG

– Unified Automation GmbH

– YASKAWA Europe GmbH

The following members provided further input for the working group:

– AUDI AG

– B+R automatizace, spol. s r.o.

– Daimler AG

– Microsoft Corporation

– Volkswagen AG

Page 16
Draft VDMA 40010-1:2025-06

1 Scope

This document specifies an OPC UA Information Model for the representation of a complete motion device
system as an interface for higher-level control and evaluation systems. A motion device system consists out of
one or more motion devices, which can be any existing or future robot type (e.g. industrial robots, mobile robots),
kinematics or manipulator as well as their control units and other peripheral components.

Additionally, this document shows in Annex C the use of the OPC 40001-1 - UA CS for Machinery Part
1 - Basic Building Blocks together with the Information Model described in this part.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable
for its application. For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

– ISO 8373:2012 Robots and robotic devices — Vocabulary

– ISO 10218-1:2011 Robots and robotic devices — Safety requirements for industrial robots — Part 1: Robots

– OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

– OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

– OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

– OPC 10000-100, OPC Unified Architecture - Part 100: Devices

http://www.opcfoundation.org/UA/Part100/

– OPC 40001-1: OPC UA for Machinery - Basic Building Blocks

http://opcfoundation.org/UA/Machinery/

http://www.opcfoundation.org/UA/Part3/
http://www.opcfoundation.org/UA/Part4/
http://www.opcfoundation.org/UA/Part5/
http://www.opcfoundation.org/UA/Part100/
http://opcfoundation.org/UA/Machinery/

Page 17
 Draft VDMA 40010-1:2025-06

3 Terms, definitions, and conventions

For the purposes of this document, the following terms and definitions apply.

3.1 Overview

It is assumed that the reader of this document understands the basic concepts of OPC UA information modelling
and the referenced documents. This specification will use these concepts to describe the Robotics Information
Model.

Note that OPC UA terms and terms defined in this specification are written in italics in the specification.

3.2 Terms

Table 1 – Terms and definitions

Term Definition of Term

Asset
management

The management of the maintenance of physical assets of an organization
throughout each asset's lifecycle.

Automatic mode Operational mode in which the robot control system operates in accordance with
the task programme (ISO 10218).

Axis The mechanical joint (ISO 8373). Joint is used as a synonym for axis.

Condition
monitoring

Acquisition and processing of information and data that indicate the state of a
machine over time (ISO 13372:2012).

Controller Controlling unit of one or more motion devices. A controller can be e.g. a specific
control cabinet or a PLC.

Industrial robot Automatically controlled, reprogrammable multipurpose manipulator,
programmable in three or more axes, which can be either fixed in place or mobile
for use in industrial automation applications (ISO 10218).

Industrial Robot
System

system comprising industrial robot, end effectors and any machinery, equipment,
devices, external auxiliary axes or sensors supporting the robot performing its
task (ISO 8373)

Joint See Axis definition.

Manipulator Machine in which the mechanism usually consists of a series of segments, jointed
or sliding relative to one another, for the purpose of grasping and/or moving
objects (pieces or tools) usually in several degrees of freedom (ISO 8373)

Manual mode Control state that allows for the direct control by an operator (ISO 10218).

Motion device A motion device has as least one axis and is a multifunctional manipulator
designed to move material, parts, tools, or specialized devices through variable
programmed motions for the performance of a variety of tasks. Examples are an
industrial robot, positioner, or mobile platform.

Motion device
system

The entire system in which one or more motion devices and one or more
controllers are integrated, e.g. a robot system.

Operating mode State of the robot control system (ISO 8373), i.e. Controller

Operational mode ISO 10218-1:2011 Ch.5.7 Operational Modes

Operator Person designated to start, monitor, and stop the intended operation of a robot or
robot system (ISO 8373).

Teach pendant Hand-held unit linked to the control system with which a robot can be
programmed or moved (ISO 8373).

Power train The composition of switch gears, fuses, transformers, converters, drives, motors,
encoders and gears to convert power to motion of one or more axis.

Page 18
Draft VDMA 40010-1:2025-06

Predictive
maintenance

Maintenance performed as governed by condition monitoring programmes (ISO
13372:2012)

Preventive
maintenance

Maintenance performed according to a fixed schedule, or according to a
prescribed criterion, that detects or prevents degradation of a functional structure,
system or component, in order to sustain or extend its useful life.

Protective stop Type of interruption of operation that allows a cessation of motion for
safeguarding purposes, and which retains the programme logic to facilitate a
restart (ISO 10218).

Safe state A defined state of the robot which is free of hazards

Safety function A safety rated function which will signal the controller to bring motion devices to a
safe state, e.g. emergency stop, protective stop

Safety states Set of safety functions and states which are related to a motion device system.

Software Runtime software or firmware of the controller.

In ISO 8373, this is called control program, and is defined like this:

Inherent set of control instructions which defines the capabilities, actions and
responses of a robot or robot system

NOTE This type of program is usually generated before installation and can only
be modified thereafter by the manufacturer.

Task control Execution engine that loads and runs task programs. Synomyms for a task control
are a sequence control or a flow control.

Task program Program running on the task control.

From ISO 8373: Set of instructions for motion and auxiliary functions that define
the specific intended task of the robot or robot system

NOTE 1 This type of program is usually generated after the installation of the
robot and can be modified by a trained person under defined conditions.

NOTE 2 An application is a general area of work; a task is specific within the
application.

Task module A module is a self-contained unit of code that can be reused across different parts
of a program or in different programs.

Tool center point Point defined for a given application with regards to the mechanical interface
coordinate system (ISO 8373)

User level Current assigned user role.

User roles User roles consist of specific permissions to access features within a software.
Users can be assigned to roles.

Virtual axis Virtual axis has no power trains directly assigned.

Annex B contains examples of the described terms.

https://www.iso.org/obp/ui/#iso:std:iso:13372:ed-2:v1:en:term:1.17

Page 19
 Draft VDMA 40010-1:2025-06

3.3 Abbreviations

Table 2 – Abbreviations and definitions

Abbreviation Definition of Abbreviation

CPU Central Processing Unit

DOF Degrees of freedom

ERP Enterprise Resource Planning

HMI Human Machine Interface

HTTP Hypertext Transfer Protocol

MES Manufacturing Execution System

OPC Open Platform Communications

OPC UA OPC Unified Architecture

OPC 10000-100 OPC Unified Architecture for Devices (DI)

OPC Unified Architecture - Part 100 – Devices

PLC Programmable logic controller

PMS Preventive Maintenance System

TCP Tool center point

TCP/IP Transmission Control Protocol/Internet Protocol

TCS Tool Coordinate System

UPS Uninterruptible Power Supply

URL Uniform resource locator

URI A uniform resource identifier (URI) is a string of characters used to identify names
or resources on the Internet. The URI describes the mechanism used to access
resources, the computers on which resources are housed and the names of the
resources on each computer.

VDMA The Mechanical Engineering Industry Association (VDMA) represents more than
3,200 member companies in the SME-dominated mechanical and systems
engineering industry in Germany and Europe.

3.4 Conventions used in this document

3.4.1 Conventions for Node descriptions

Node definitions are specified using tables (see Table 4).

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the ReferenceType name, the BrowseName of the TargetNode and its
NodeClass.

– If the TargetNode is a component of the Node being defined in the table, the Attributes of the composed
Node are defined in the same row of the table.

The DataType is only specified for Variables; “[<number>]” indicates a single-dimensional array, for multi-
dimensional arrays the expression is repeated for each dimension (e.g. [2][3] for a two-dimensional array). For
all arrays, the ArrayDimensions is set as identified by <number> values. If no <number> is set, the
corresponding dimension is set to 0, indicating an unknown size. If no number is provided at all the
ArrayDimensions can be omitted. If no brackets are provided, it identifies a scalar DataType and the
ValueRank is set to the corresponding value (see OPC 10000-3). In addition, ArrayDimensions is set to null or
is omitted. If it can be Any or ScalarOrOneDimension, the value is put into “{<value>}”, so either “{Any}” or
“{ScalarOrOneDimension}” and the ValueRank is set to the corresponding value (see OPC 10000-3) and the
ArrayDimensions is set to null or is omitted. Examples are given Table 3.

https://www.copadata.com/de/hmi-scada-loesungen/human-machine-interface-hmi/
https://de.wikipedia.org/wiki/Transmission_Control_Protocol/Internet_Protocol

Page 20
Draft VDMA 40010-1:2025-06

Table 3 – Examples of Data Types

Notation Data-

Type

Value-

Rank

ArrayDimensions Description

Int32 Int32 -1 omitted or null A scalar Int32.

Int32[] Int32 1 omitted or {0} Single-dimensional array of Int32 with an unknown

size.

Int32[][] Int32 2 omitted or {0,0} Two-dimensional array of Int32 with unknown sizes

for both dimensions.

Int32[3][] Int32 2 {3,0} Two-dimensional array of Int32 with a size of 3 for the

first dimension and an unknown size for the second

dimension.

Int32[5][3] Int32 2 {5,3} Two-dimensional array of Int32 with a size of 5 for the

first dimension and a size of 3 for the second

dimension.

Int32{Any} Int32 -2 omitted or null An Int32 where it is unknown if it is scalar or array

with any number of dimensions.

Int32{ScalarOrOneDimension} Int32 -3 omitted or null An Int32 where it is either a single-dimensional array

or a scalar.

– The TypeDefinition is specified for Objects and Variables.

– The TypeDefinition column specifies a symbolic name for a NodeId, i.e. the specified Node points with a
HasTypeDefinition Reference to the corresponding Node.

– The ModellingRule of the referenced component is provided by specifying the symbolic name of the rule in
the ModellingRule column. In the AddressSpace, the Node shall use a HasModellingRule Reference to
point to the corresponding ModellingRule Object.

If the NodeId of a DataType is provided, the symbolic name of the Node representing the DataType shall be
used.

Nodes of all other NodeClasses cannot be defined in the same table; therefore, only the used ReferenceType,
their NodeClass and their BrowseName are specified. A reference to another part of this document points to
their definition.

Table 4 illustrates the table. If no components are provided, the DataType, TypeDefinition and ModellingRule
columns may be omitted and only a Comment column is introduced to point to the Node definition.

Table 4 – Type Definition Table

Attribute Value

Attribute name Attribute value. If it is an optional Attribute that is not set “--“will be used.

References NodeClass BrowseName DataType TypeDefinition ModellingRule

ReferenceType

name

NodeClass of

the

TargetNode.

BrowseName of the

target Node. If the

Reference is to be

instantiated by the

server, then the value

of the target Node’s

BrowseName is “--“.

DataType of

the

referenced

Node, only

applicable

for

Variables.

TypeDefinition of the referenced

Node, only applicable for Variables

and Objects.

Referenced

ModellingRule of

the referenced

Object.

NOTE Notes referencing footnotes of the table content.

Components of Nodes can be complex that is containing components by themselves. The TypeDefinition,
NodeClass, DataType and ModellingRule can be derived from the type definitions, and the symbolic name can
be created as defined in chapter 3.4.3.1. Therefore, those containing components are not explicitly specified;
they are implicitly specified by the type definitions.

Page 21
 Draft VDMA 40010-1:2025-06

3.4.2 NodeIds and BrowseNames

3.4.2.1 NodeIds

The NodeIds of all Nodes described in this standard are only symbolic names. Fehler! Verweisquelle konnte n
icht gefunden werden. defines the actual NodeIds.

The symbolic name of each Node defined in this specification is its BrowseName, or, when it is part of another
Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself. In this case “part of” means that
the whole has a HasProperty or HasComponent Reference to its part. Since all Nodes not being part of another
Node have a unique name in this specification, the symbolic name is unique.

The namespace for all NodeIds defined in this specification is defined in Fehler! Verweisquelle konnte nicht
gefunden werden.. The namespace for this NamespaceIndex is Server-specific and depends on the position
of the namespace URI in the server namespace table.

Note that this specification not only defines concrete Nodes, but also requires that some Nodes shall be
generated, for example one for each Session running on the Server. The NodeIds of those Nodes are Server-
specific, including the namespace. But the NamespaceIndex of those Nodes cannot be the NamespaceIndex
used for the Nodes defined in this specification, because they are not defined by this specification but generated
by the Server.

3.4.2.2 BrowseNames

The text part of the BrowseNames for all Nodes defined in this specification is specified in the tables defining
the Nodes. The NamespaceIndex for all BrowseNames defined in this specification is defined in Annex A.

If the BrowseName is not defined by this specification, a namespace index prefix like ‘0:EngineeringUnits’ or
‘2:DeviceRevision’ is added to the BrowseName. This is typically necessary if a property of another specification
is overwritten or used in the OPC UA types defined in this specification. Table 148 provides a list of namespaces
and their indexes as used in this specification.

3.4.3 Common Attributes

3.4.3.1 General

The Attributes of Nodes, their DataTypes and descriptions are defined in OPC 10000-3. Attributes not marked
as optional are mandatory and shall be provided by a Server. The following tables define if the Attribute value
is defined by this specification or if it is server specific.

For all Nodes specified in this specification, the Attributes named in Figure 5 shall be set as specified in the
table.

Table 5 – Common Node Attributes

Attribute Value

DisplayName The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to the

BrowseName of the Node for the LocaleId “en”. Whether the server provides translated names for

other LocaleIds is server specific.

Description Optionally a server-specific description is provided.

NodeClass Shall reflect the NodeClass of the Node.

NodeId The NodeId is described by BrowseNames as defined in 3.4.2.1.

WriteMask Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided, it shall set

all non-server-specific Attributes to not writable. For example, the Description Attribute may be set to

writable since a Server may provide a server-specific description for the Node. The NodeId shall not be

writable, because it is defined for each Node in this specification.

UserWriteMask Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask

Attribute apply.

RolePermissions Optionally server-specific role permissions can be provided.

UserRolePermissions Optionally the role permissions of the current Session can be provided. The value is server-specific and

depend on the RolePermissions Attribute (if provided) and the current Session.

AccessRestrictions Optionally server-specific access restrictions can be provided.

Page 22
Draft VDMA 40010-1:2025-06

3.4.3.2 Objects

For all Objects specified in this specification, the Attributes named in Table 6 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Table 6 – Common Object Attributes

Attribute Value

EventNotifier Whether the Node can be used to subscribe to Events or not is server specific.

3.4.3.3 Variables

For all Variables specified in this specification, the Attributes named in Table 7 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Table 7 – Common Variable Attributes

Attribute Value

MinimumSamplingInterval Optionally, a server-specific minimum sampling interval is provided.

AccessLevel The access level for Variables used for type definitions is server-specific, for all other Variables

defined in this specification, the access level shall allow reading; other settings are server-specific.

UserAccessLevel The value for the UserAccessLevel Attribute is server specific. It is assumed that all Variables can be

accessed by at least one user.

Value For Variables used as InstanceDeclarations, the value is server-specific; otherwise, it shall represent

the value described in the text.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the

ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the

ArrayDimensions Attribute shall be specified in the table defining the Variable.

Historizing The value for the Historizing Attribute is server specific.

AccessLevelEx If the AccessLevelEx Attribute is provided, it shall have the bits 8, 9, and 10 set to 0, meaning that

read and write operations on an individual Variable are atomic, and arrays can be partly written.

3.4.3.4 VariableTypes

For all VariableTypes specified in this specification, the Attributes named in Table 8 be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Table 8 – Common VariableType Attributes

Attributes Value

Value Optionally a server-specific default value can be provided.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the

ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is server specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the ArrayDimensions

Attribute shall be specified in the table defining the VariableType.

3.4.3.5 Methods

For all Methods specified in this specification, the Attributes named in Table 9 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC 10000-3.

Page 23
 Draft VDMA 40010-1:2025-06

Table 9 – Common Method Attributes

Attributes Value

Executable All Methods defined in this specification shall be executable (Executable Attribute set to “True”) unless it

is defined differently in the Method definition.

UserExecutable The value of the UserExecutable Attribute is server specific. It is assumed that all Methods can be

executed by at least one user.

3.4.3.6 Expanding conventions

For the following illustrations, the legend is as follows:

Object

VariableTypeVariable

ObjectType

Method ReferenceType

View DataType

Symmetric

Reference
HasType

Definition

Asymmetric

Reference

Hierarchical

Reference

Has

Component

Has

Property

Has

SubType

Figure 1 – OPC UA standard definitions

Additional definitions:

IsSubTypeOf

ObjectType

IsSubTypeOf

VariableType

Mandatory Object

Optional Object

MandatoryPlaceholder

Object

OptionalPlaceholder

Object

Mandatory

Variable

Optional

Variable

Figure 2 – OPC UA and additional definitions

Table 10 describes the additional definitions.

Page 24
Draft VDMA 40010-1:2025-06

Table 10 – Description of additional definitions

Node element Graphical representation Definition of node element

Mandatory Object Rectangular Frame A mandatory object with its type
definition

Optional Object Rectangular bold dashed Frame An optional object with its type
definition

Mandatory Placeholder Object Rectangular bold Frame A mandatory placeholder for
objects with its type definition

Optional Placeholder Object Rectangular dotted Frame An optional placeholder for
objects with its type definition

ObjectType Rectangular Frame with shadow An object type with its type
definition

VariableType Rounded rectangular Frame with
shadow

A variable type with its type
definition

Mandatory Variable Rectangular Frame with rounded
corners

A mandatory variable with its type
definition

Optional Variable Dotted rectangular Frame with
rounded corners

An optional variable with its type
definition

3.4.3.7 Handling of not supported properties

In case of not supported Properties the following default shall be provided:

– Properties with DataType String: empty string

– Properties with DataType LocalizedText: empty text field

– RevisionCounter Property: - 1

4 General information to OPC Robotics and OPC UA

4.1 Introduction to OPC Robotics

The OPC Robotics specification describes an information model, which aims to cover all current and future
robotic systems such as:

– Industrial robots

– Mobile robots

– Several control units

– Peripheral devices, which do not have their own OPC UA server.

Part 1 provides information for asset management and condition monitoring. In future parts, the information
model will be extended to cover more use cases.

The following functionalities are covered:

– Provision of asset configuration and runtime data of a running motion device system and its components
e.g. manipulators, axes, motors, controllers, and software

Following functions are not included and might be covered in future parts:

– A messaging mechanism covered by events and alarms to provide conditions.

Page 25
 Draft VDMA 40010-1:2025-06

– A state machine to inform about the status of task controls and to interact via methods.

– The possibility for the operator to store customer specific information inside the motion device system e.g.
location, cost centre, ERP data, ...

4.2 Introduction to OPC Unified Architecture

4.2.1 What is OPC UA?

OPC UA is an open and royalty free set of standards designed as a universal communication protocol. While
there are numerous communication solutions available, OPC UA has key advantages:

– A state of art security model (see OPC 10000-2).

– A fault tolerant communication protocol.

– An information modelling Framework that allows application developers to represent their data in a way that
makes sense to them.

OPC UA has a broad scope which delivers for economies of scale for application developers. This means that
a larger number of high-quality applications at a reasonable cost are available.

The OPC UA model is scalable from small devices to ERP systems. OPC UA Servers process information
locally and then provide that data in a consistent format to any application requesting data - ERP, MES, PMS,
Maintenance Systems, HMI, Smartphone, or a standard Browser, for example. For a more complete overview
see OPC 10000-1.

4.2.2 Basics of OPC UA

As an open standard, OPC UA is based on standard internet technologies, like TCP/IP, HTTP, Web Sockets.

As an extensible standard, OPC UA provides a set of Services (see OPC 10000-4) and a basic information
model Framework. This Framework provides an easy manner for creating and exposing vendor defined
information in a standard way. More importantly all OPC UA Clients are expected to be able to discover and
use vendor-defined information. This means OPC UA users can benefit from the economies of scale that come
with generic visualization and historical applications. This specification is an example of an OPC UA Information
Model designed to meet the needs of developers and users.

OPC UA Clients can be any consumer of data from another device on the network to browser based thin clients
and ERP systems. The full scope of OPC UA applications is shown in Figure 3.

Figure 3 – The Scope of OPC UA within an Enterprise

OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling lost
messages, failover, heartbeat, etc. With its binary encoded data, it offers a high-performing data exchange
solution. Security is built into OPC UA as security requirements become increasingly important especially since

Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Application

SCADA

MES

ERP

Device DeviceDevice

Secure

Communication

Across the

Internet

Fast, Non-

Proprietary

Device to

Device

Control to Device

Network

Integration

Integration

with

ERP and MES

OPC
UA
Clients

OPC
UA
Servers
&
Clients

Page 26
Draft VDMA 40010-1:2025-06

environments are connected to the office network or the internet and attackers are starting to focus on
automation systems.

4.2.3 Information modelling in OPC UA

4.2.3.1 Concepts

OPC UA provides a Framework that can be used to represent complex information as Objects in an
AddressSpace which can be accessed with standard services. These Objects consist of Nodes connected by
References. Different classes of Nodes convey different semantics. For example, a Variable Node represents
a value that can be read or written. The Variable Node has an associated DataType that can define the actual
value, such as a string, float, structure etc. It can also describe the Variable value as a variant. A Method Node
represents a function that can be called. Every Node has a number of Attributes including a unique identifier
called NodeId and non-localized name called BrowseName. An Object representing a ‘Reservation’ is shown in
Figure 4.

Reservation

Who

When

First Name
“John”

Last Name
“Smith”

Start
“2:00PM”

End
“4:00PM”

Cancel

Object Nodes
convey semantics

 and structure

Method Nodes
define complex

behaviors

Variable Nodes
provide access to data

Figure 4 – A Basic Object in an OPC UA Address Space

Object and Variable Nodes represent instances and they always reference a TypeDefinition (ObjectType or
VariableType) Node which describes their semantics and structure. Figure 5 illustrates the relationship between
an instance and its TypeDefinition.

The type Nodes are templates that define all the children that can be present in an instance of the type. In the
example in Figure 5 the PersonType ObjectType defines two children: First Name and Last Name. All instances
of PersonType are expected to have the same children with the same BrowseNames. Within a type the
BrowseNames uniquely identifies the children. This means Client applications can be designed to search for
children based on the BrowseNames from the type instead of NodeIds. This eliminates the need for manual
reconfiguration of systems if a Client uses types that multiple Servers implement.

Page 27
 Draft VDMA 40010-1:2025-06

OPC UA also supports the concept of sub-typing. This allows a modeller to take an existing type and extend it.
There are rules regarding sub-typing defined in OPC 10000-3, but in general they allow the extension of a given
type or the restriction of a DataType. For example, the modeller may decide that the existing ObjectType in
some cases needs an additional Variable. The modeller can create a subtype of the ObjectType and add the
Variable. A Client that is expecting the parent type can treat the new type as if it were of the parent type.
Regarding DataTypes, subtypes can only restrict. If a Variable is defined to have a numeric value, a sub type
could restrict it to a float.

Who

First Name
“John”

Last Name
“Smith”

First Name
[String]

Last Name
[String]

Middle Name
“Jacob”

Instances can
be extended

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node
which defines its structure

Semantics: An instance of PersonType represents a human
Structure: An instance of PersonType has a First Name and a Last Name

BaseObjectType

PersonType

Figure 5 – The Relationship between Type Definitions and Instances

References allow Nodes to be connected in ways that describe their relationships. All References have a
ReferenceType that specifies the semantics of the relationship. References can be hierarchical or non-
hierarchical. Hierarchical references are used to create the structure of Objects and Variables. Non-hierarchical
are used to create arbitrary associations. Applications can define their own ReferenceType by creating subtypes
of an existing ReferenceType. Subtypes inherit the semantics of the parent but may add additional restrictions.
Figure 6 depicts several References, connecting different Objects.

Page 28
Draft VDMA 40010-1:2025-06

Joe Sam Dogs Cats

Animals

OrganizesOrganizes HasClassification HasClassification

Kennel #2

Owns

PoodleBreeds

HasClassification

Farmers

Siamese

HasClassification

Fido HasBreedLivesIn

Organizes

Owns

Has

Classification

Non-

Hierarchical

Breeds

HasBreed

LivesIn

Reference Types
can be created

 from other reference types

They can be used to
show hierarchies

 or just relationships

Figure 6 – Examples of References between Objects

The figures above use a notation that was developed for the OPC UA specification. The notation is summarized
in Figure 7. UML representations can also be used; however, the OPC UA notation is less ambiguous because
there is a direct mapping from the elements in the figures to Nodes in the AddressSpace of an OPC UA Server.

Object Variable Method View

<TypeName> <TypeName> <TypeName>

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

HasEventSource
HasComponent

HasProperty

HasTypeDefinition

HasSubtype

Figure 7 – The OPC UA Information Model Notation

Page 29
 Draft VDMA 40010-1:2025-06

A complete description of the different types of Nodes and References can be found in OPC 10000-3 and the
base structure is described in OPC 10000-5.

OPC UA specification defines a very wide range of functionality in its basic information model. It is not expected
that all Clients or Servers support all functionality in the OPC UA specifications. OPC UA includes the concept
of Profiles, which segment the functionality into testable certifiable units. This allows the definition of functional
subsets (that are expected to be implemented) within a companion specification. The Profiles do not restrict
functionality but generate requirements for a minimum set of functionality (see OPC 10000-7).

4.2.3.2 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent AddressSpace.
Namespaces are used to make this possible by eliminating naming and id conflicts between information from
different sources. Namespaces in OPC UA have a globally unique string called a NamespaceUri and a locally
unique integer called a NamespaceIndex. The NamespaceIndex is only unique within the context of a Session
between an OPC UA Client and an OPC UA Server. The Services defined for OPC UA use the NamespaceIndex
to specify the Namespace for qualified values.

There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and QualifiedNames.
NodeIds are globally unique identifiers for Nodes. This means the same Node with the same NodeId can appear
in many Servers. This, in turn, means Clients can have built in knowledge of some Nodes. OPC UA Information
Models define globally unique NodeIds for the TypeDefinitions defined by the Information Model.

QualifiedNames are non-localized names qualified with a Namespace. They are used for the BrowseNames of
Nodes and allow the same names to be used by different information models without conflict. TypeDefinitions
are not allowed to have children with duplicate BrowseNames; however, instances do not have that restriction.

4.2.3.3 Companion Specifications

An OPC UA companion specification for an industry specific vertical market describes an Information Model by
defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes that represent the concepts used in the
vertical market, and potentially also well-defined Objects as entry points into the AddressSpace.

5 Use Cases

Part 1 of this companion specification describes an interface that provides access to asset management and
condition monitoring data of motion device systems. Based on the provided data the following use cases are
supported:

1) Supervision: With the provided data by the companion specification the robot system can be supervised
and monitored. Functional analysis of individual robot systems within the factory ground is possible. During
production phase the companion specification provides data about the operational and safety states as
well as process data.

2) Condition monitoring: Condition monitoring is the process of determining the condition of machinery while
in operation, to identify a significant change which is indicative of a developing fault. This is a major
component of Predictive Maintenance where the maintenance is scheduled to shorten the downtime. The
typical parameters needed for condition monitoring like motor temperature, load, on time are provided by
the companion specification for robotics.

3) Asset management: The companion specification for robotics provides detailed information of the main
electrical and mechanical parts like part number, brand name, serial number etc. With these data an
effective maintenance is possible because the technician knows in advance which parts need to be
changed and can be prepared.

4) Remote operation: The companion specification provides state machines at the controller and the task
control level to provide remote operation capability via OPC UA. This includes, upload, download, loading,
unloading, starting, stopping of robot programs, handling conditions etc.

Figure 8 shows the communication structure with OPC UA.

Page 30
Draft VDMA 40010-1:2025-06

Figure 8 – Communication structure with OPC UA

Figure 9 – OPC Robotics describes the semantic self-description.

6 OPC Robotics Information Model overview

The MotionDeviceSystemType as a subtype of the ComponentType (OPC UA for Devices) is used as the root
object representing the motion device system with all its subcomponents, see Figure 10.

Page 31
 Draft VDMA 40010-1:2025-06

OPC UA for Devices
2:DeviceType

OPC UA for Robotics

Part 1

Part 2

Part n

MotionDevice

SystemType

2:ComponentType

 .

 . .

 .

OPC UA
0:BaseObjectType

Figure 10 – OPC Robotics top level view.

Figure 11 shows the main objects and the relations between them in an abstract view.

In Part 1 in general all variables and properties are read only unless stated otherwise in the description. A
vendor can decide to provide variables or properties as writeable by client side as well.

Page 32
Draft VDMA 40010-1:2025-06

<ControllerIdentifier>

<MotionDeviceIdentifier>

<SafetyStateIdentifier>SafetyStates

MotionDevices

Controllers

2:ComponentName

<AxisIdentifier>Axes

2:ComponentName

ParameterSet

MotionDeviceType

<PowerTrainIdentifier>PowerTrains

2:ComponentName

SafetyStateType

EmergencyStop

Functions

ProtectiveStop

Functions

ParameterSet

Components <ComponentIdentifier>

TaskControls <TaskControlIdentifier>

<SoftwareIdentifier>Software

2:Manufacturer

2:ComponentName

ControllerType

2:Manufacturer

OperationalMode
UpsState

InControl

TaskProgramNameParameterSet

2:ComponentName

TaskControlType

MotionDeviceSystemType

ParameterSet

Additional

Components

<AddtionalComponent

Identifier>

2:Model

2:Model
<ProtectiveStopFunction

Identifier>

<EmergencyStopFunction

Identifier>

Figure 11 – OPC Robotics overview.

Page 33
 Draft VDMA 40010-1:2025-06

7 OPC UA ObjectTypes

7.1 MotionDeviceSystemType ObjectType Definition

7.1.1 Overview

The MotionDeviceSystemType provides a representation of a motion device system as an entry point to
the OPC UA device set. At least one instance of a MotionDeviceSystemType must be instantiated in
the DeviceSet. This instance organises the information model of a complete robotics system using
instances of the described ObjectTypes. The MotionDeviceSystemType is formally defined in Table 11.

ControllerType:

<ControllerIdentifier>

MotionDeviceType:

<MotionDeviceIdentifier>

SafetyStateType:

<SafetyStatesIdentifier>
FolderType:

SafetyStates

FolderType:

MotionDevices

FolderType::

Controllers

MotionDeviceSystemType

2:ComponentType
PropertyType:

2:ComponentName

Figure 12 – Overview MotionDeviceSystemType

7.1.2 MotionDeviceSystemType definition

Table 11 – MotionDeviceSystemType Definition

Attribute Value

BrowseName MotionDeviceSystemType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Other

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI), inheriting the InstanceDeclarations of that Node

0:HasComponent Object MotionDevices 0:FolderType M

0:HasComponent Object Controllers 0:FolderType M

0:HasComponent Object SafetyStates 0:FolderType M

0:HasProperty Variable 2:ComponentName 0:LocalizedText 0:PropertyType O

Conformance Units

Rob MotionDeviceSystem Base

The components of the MotionDeviceSystemType have additional subcomponents which are defined in Table
12.

Page 34
Draft VDMA 40010-1:2025-06

Table 12 – MotionDeviceSystemType Additional Subcomponents

Source Path Reference NodeClass BrowseName DataType TypeDefinition Others

MotionDevices 0:HasComponent Object <MotionDeviceIdentifier> MotionDeviceType MP

Controllers 0:HasComponent Object <ControllerIdentifier> ControllerType MP

SafetyStates 0:HasComponent Object <SafetyStateIdentifier> SafetyStateType MP

A motion device system may consist of multiple motion devices, controllers, and safety systems. References
are used to describe the relations between those subsystems. Examples are described in Annex B.

The ComponentName property provides a user writeable name provided by the vendor, integrator, or user of
the device. The ComponentName may be a default name given by the vendor. This property is defined by
ComponentType defined in OPC 10000-100.

MotionDevices is a container for one or more instances of the MotionDeviceType.

Controllers is a container for one or more instances of the ControllerType.

SafetyStates is a container for one or more instances of the SafetyStatesType.

7.2 MotionDeviceType ObjectType Definition

7.2.1 Overview

The MotionDeviceType describes one independent motion device, e.g. a manipulator, a turn table, or a linear
axis. Examples are described in Annex B.

A MotionDevice shall have at least one axis and one power train. The MotionDeviceType is formally
defined in 7.2.2

Page 35
 Draft VDMA 40010-1:2025-06

AxisType

<AxisIdentifier>
0:FolderType

Axes

0:BaseDataVariableType

OnPath

0:PropertyType

2:Manufacturer

0:PropertyType

2:Model

0:BaseObjectType

2:ParameterSet

0:BaseDataVariableType

InControl

0:BaseDataVariableType

SpeedOverride

0:PropertyType

MotionDeviceCategory

2:ComponentType

MotionDeviceType

PowerTrainType

<PowerTrainIdentifier>
0:FolderType

PowerTrains

LoadType

FlangeLoad

0:PropertyType

2:AssetId

0:PropertyType

2:DeviceManual

0:PropertyType

2:ComponentName

0:PropertyType

2:SerialNumber

0:PropertyType

2:ProductCode

0:FolderType

AdditionalComponents

2:ComponentType

<AdditionalComponentIdentifier>

0:NodeId

TaskControlReference

Figure 13 – Overview MotionDeviceType

7.2.2 MotionDeviceType definition

Page 36
Draft VDMA 40010-1:2025-06

Table 13 – MotionDeviceType Definition

Attribute Value

BrowseName MotionDeviceType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Other

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI), inheriting the InstanceDeclarations of that Node

0:HasProperty Variable 2:SerialNumber 0:String 0:PropertyType M

0:HasProperty Variable 2:Manufacturer 0:LocalizedText 0:PropertyType M

0:HasProperty Variable 2:Model 0:LocalizedText 0:PropertyType M

0:HasProperty Variable 2:ProductCode 0:String 0:PropertyType M

0:HasProperty Variable MotionDeviceCategory MotionDeviceCategoryEnumeration 0:PropertyType M

0:HasComponent Variable TaskControlReference 0:NodeId 0:BaseDataVariableType O

0:HasComponent Object 2:ParameterSet 0:BaseObjectType M

0:HasComponent Object Axes 0:FolderType M

0:HasComponent Object PowerTrains 0:FolderType M

0:HasComponent Object FlangeLoad LoadType O

0:HasComponent Object AdditionalComponents 0:FolderType O

0:HasProperty Variable 2:AssetId 0:String 0:PropertyType O

0:HasProperty Variable 2:DeviceManual 0:String 0:PropertyType O

0:HasProperty Variable 2:ComponentName 0:LocalizedText 0:PropertyType O

Conformance Units

Rob MotionDeviceSystem Base

Rob MotionDevice AM Extended

Rob MotionDevice CM Extended

Rob MotionDevice Flangeload

Rob TC Relationship

The components of the MotionDeviceType have additional subcomponents which are defined in Table
15.

Table 14 – MotionDeviceType Additional Subcomponents

Source Path Reference NodeClass BrowseName DataType TypeDefinition Other

2:ParameterSet 0:HasComponent Variable OnPath 0:Boolean 0:BaseDataVariableType O

2:ParameterSet 0:HasComponent Variable InControl 0:Boolean 0:BaseDataVariableType O

2:ParameterSet 0:HasComponent Variable SpeedOverride 0:Double 0:BaseDataVariableType M

Axes 0:HasComponent Object <AxisIdentifier> AxisType MP

PowerTrains 0:HasComponent Object <PowerTrainIdentifier> PowerTrainType MP

AdditionalCompon
ents

0:HasComponent Object <AdditionalComponent
Identifier>

 0:BaseObjectType MP

The SerialNumber property is a unique production number assigned by the manufacturer of the device. This is
often stamped on the outside of the device and may be used for traceability and warranty purposes. This
property is derived from ComponentType defined in OPC 10000-100.

The Manufacturer property provides the name of the company that manufactured the device. This property is
derived from ComponentType defined in OPC 10000-100.

The Model property provides the name of the product. This property is derived from ComponentType defined in
OPC 10000-100.

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC 10000-100.

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The vendor, integrator or user of the device provides the ID. It contains typically an identifier in a branch, use
case or user specific naming scheme. This could be for example a reference to an electric scheme. For electric
schemes typically EN 81346-2 is used. A use case could be to build up a location-oriented view in a spare part
management client software. It enables to identify parts with the same article number which is not possible if
this entry is not used. This property is defined by ComponentType defined in OPC 10000-100.

Page 37
 Draft VDMA 40010-1:2025-06

The DeviceManual property allows specifying an address of the user manual for the device. It may be a
pathname in the file system or a URL (Web address). This property is defined by ComponentType defined in
OPC 10000-100.

The ComponentName property provides a user writeable name provided by the vendor, integrator, or user of
the device. The ComponentName may be a default name given by the vendor. This property is defined by
ComponentType defined in OPC 10000-100.

FlangeLoad provides data for the load at the flange or mounting point of the motion device.

The variable MotionDeviceCategory provides the kind of motion device defined by
MotionDeviceCategoryEnumeration based on ISO 8373 (10.1).

The Variable TaskControlReference provides a NodeId pointing to the instance of
TaskControlOperationType defined in 7.15, which controls this motion device in combination with the
loaded program.

Description of ParameterSet of MotionDeviceType:

– Variable OnPath: The variable OnPath is true if the motion device is on or near enough the planned program
path such that program execution can continue. If the MotionDevice deviates too much from this path in
case of errors or an emergency stop, this value becomes false. If OnPath is false, the motion device needs
repositioning to continue program execution.

– Variable InControl: The variable InControl provides the information if the actuators (in most cases a motor)
of the motion device are powered up and in control: "true". The motion device might be in a standstill.

– Variable SpeedOverride: The SpeedOverride provides the current speed setting in percent of programmed
speed (0 - 100%).

Axes is a container for one or more instances of the AxisType (7.3).

PowerTrains is a container for one or more instances of the PowerTrainType.

AdditionalComponents is a container for one or more instances of any other ObjectType (any subtype of
0:BaseObjectType). The listed components are installed at the motion device, e.g. an IO-board.

NOTE: Components like motors or gears of a motion device are placed inside the power train object and not
inside this AdditionalComponents container. The intention of this folder is to integrate devices which are defined
in companion specifications that use OPC 10000-100 ComponentType. From this specification, only instances
of AuxiliaryComponentType and DriveType can be used in this container.

7.3 AxisType ObjectType Definition

7.3.1 Overview

The AxisType describes an axis of a motion device. It is formally defined in Table 15.

Page 38
Draft VDMA 40010-1:2025-06

AnalogUnitType:

ActualPosition

AnalogUnitType:

ActualSpeed

BaseObjectType:

2:ParameterSet

PropertyType:

MotionProfile

LoadType:

AdditionalLoad

AxisType

2:ComponentType
PropertyType:

2:AssetId

AnalogUnitType:

ActualAcceleration

Figure 14 – Overview AxisType

7.3.2 AxisType definition

Table 15 – AxisType Definition

Attribute Value

BrowseName AxisType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Other

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI), inheriting the InstanceDeclarations of that Node

0:HasProperty Variable MotionProfile AxisMotionProfileEnumeration 0:PropertyType M

0:HasComponent Object AdditionalLoad LoadType O

0:HasComponent Object 2:ParameterSet 0:BaseObjectType M

Requires Object <PowerTrainIdentifier> PowerTrainType OP

0:HasProperty Variable 2:AssetId 0:String 0:PropertyType O

Conformance Units

Rob MotionDeviceSystem Base

Rob Axis AM Extended

Rob Axis CM Extended

Rob Axis AdditionalLoad

The components of the AxisType have additional subcomponents which are defined in Table 18.

Table 16 – AxisType Additional Subcomponents

Source Path Reference NodeClass BrowseName DataType TypeDefinition Others

2:ParameterSet 0:HasComponent Variable ActualPosition 0:Double 0:AnalogUnitType M

2:ParameterSet 0:HasComponent Variable ActualSpeed 0:Double 0:AnalogUnitType O

2:ParameterSet 0:HasComponent Variable ActualAcceleration 0:Double 0:AnalogUnitType O

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The vendor, integrator or user of the device provides the ID. It contains typically an identifier in a branch, use
case or user specific naming scheme. This could be for example a reference to an electric scheme. For electric

Page 39
 Draft VDMA 40010-1:2025-06

schemes typically EN 81346-2 is used. The AssetID of the AxisType provides a manufacturer-specific axis
identifier within the control system. This property is defined by ComponentType defined in OPC 10000-100.

The MotionProfile property provides the kind of axis motion as defined by the AxisMotionProfileEnumeration
(10.2)

AdditionalLoad provides data for the load that is mounted on this axis, e.g., a transformer for welding.

The Requires reference provides the relationship of axes to power trains. For complex kinematics this does not
need to be a one-to-one relationship, because more than one power train might influence the motion of one
axis. This reference connects all power trains to an axis that must be actively driven when only this axis should
move and all other axes should stand still.

Virtual axes that are not actively driven by a power train do not have this reference. The InverseName is
IsRequiredBy.

Description of ParameterSet of AxisType:

– Variable ActualPosition: The ActualPosition variable provides the current position of the axis and may have
limits. If the axis has physical limits, the EURange property of the AnalogUnitType shall be provided.

– Variable ActualSpeed: The ActualSpeed variable provides the axis speed. Applicable speed limits of the
axis shall be provided by the EURange property of the AnalogUnitType.

– Variable ActualAcceleration: The ActualAcceleration variable provides the axis acceleration. Applicable
acceleration limits of the axis shall be provided by the EURange property of the AnalogUnitType.

7.4 PowerTrainType ObjectType Definition

7.4.1 Overview

A power train typically consists of one motor and gear to provide the required torque. Often there is a
one-to-one relation between axes and power trains, but it is also possible to have axis coupling and
thus one power train can move multiple axes and one axis can be moved by multiple power trains. One
power train can have multiple drives, motors, and gears when these components move logically the
same axes, for example in a master/slave setup. Examples are described in Annex B. The
PowerTrainType represents instances of power trains of a motion device and is formally defined in

Table 17.

PowerTrainType

GearType

<GearIdentifier>

MotorType:

<MotorIdentifier>

2:ComponentType
PropertyType:

2:ComponentName

Figure 15 – Overview PowerTrainType

Page 40
Draft VDMA 40010-1:2025-06

7.4.2 PowerTrainType definition

Table 17 – PowerTrainType Definition

Attribute Value

BrowseName PowerTrainType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Other

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI), inheriting the InstanceDeclarations of that Node

0:HasComponent Object <MotorIdentifier> MotorType MP

0:HasComponent Object <GearIdentifier> GearType OP

Moves Object <AxisIdentifier> AxisType OP

HasSlave Object <PowerTrainIdentifier> PowerTrainType OP

0:HasProperty Variable 2:ComponentName 0:LocalizedText 0:PropertyType O

Conformance Units

Rob MotionDeviceSystem Base

Rob PowerTrain AM Extended

The ComponentName property provides a user writeable name provided by the vendor, integrator, or user of
the device. The ComponentName may be a default name given by the vendor.

The ComponentName of the PowerTrainType provides a manufacturer-specific power train identifier within the
control system.

This property is defined by ComponentType defined in OPC 10000-100.

<MotorIdentifier> indicates that a power train contains one or more motors represented by MotorType instances.

The IsConnectedTo ReferenceType defined in 8.6 is intended to provide the relationship between a motor and
a gear of a power train.

<GearIdentifier> indicates that a power train may contain one or more gears represented by GearType
instances.

The IsConnectedTo ReferenceType defined in 8.6 is intended to provide the relationship between a motor and
a gear of a power train.

Moves is a reference to provide the relationship of power trains to axes. For complex kinematics this does not
need to be a one-to-one relationship, because a power train might influence the motion of more than one axis.
This reference connects all axis to a power train that that move when only this power train moves and all other
powertrains stand still. The InverseName is IsMovedBy.

HasSlave is a reference to provide the master-slave relationship of power trains which provide torque for a
common axis. The InverseName is IsSlaveOf.

7.5 MotorType ObjectType Definition

7.5.1 Overview

The MotorType describes a motor in a power train. It is formally defined in Table 18.

Page 41
 Draft VDMA 40010-1:2025-06

AnalogUnitType:

MotorTemperature

2:ParameterSet

BaseDataVariableType:

BrakeReleased

BaseDataVariableType:

EffectiveLoadRate

2:ComponentType

MotorType

PropertyType:

2:SerialNumber

PropertyType:

2:Manufacturer

PropertyType:

2:Model

PropertyType:

2:ProductCode

PropertyType:

2:AssetId

Figure 16 – Overview MotorType

7.5.2 MotorType definition

Table 18 – MotorType Definition

Attribute Value

BrowseName MotorType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Other

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI), inheriting the InstanceDeclarations of that Node

0:HasProperty Variable 2:SerialNumber 0:String 0:PropertyType M

0:HasProperty Variable 2:Manufacturer 0:LocalizedText 0:PropertyType M

0:HasProperty Variable 2:Model 0:LocalizedText 0:PropertyType M

0:HasProperty Variable 2:ProductCode 0:String 0:PropertyType M

0:HasComponent Object 2:ParameterSet 0:BaseObjectType M

IsDrivenBy Object <DriveIdentifier> 0:BaseObjectType OP

0:HasProperty Variable 2:AssetId 0:String 0:PropertyType O

Conformance Units

Rob MotionDeviceSystem Base

Rob Motor AM Extended

Rob Motor CM Extended

The components of the MotorType have additional subcomponents which are defined in Table 19.

Page 42
Draft VDMA 40010-1:2025-06

Table 19 – MotorType Additional Subcomponents

Source Path Reference NodeClass BrowseName DataType TypeDefinition Others

2:ParameterSet 0:HasComponent Variable BrakeReleased 0:Boolean 0:BaseDataVariableType O

2:ParameterSet 0:HasComponent Variable MotorTemperature 0:Double AnalogUnitType M

2:ParameterSet 0:HasComponent Variable EffectiveLoadRate 0:UInt16 0:BaseDataVariableType O

The SerialNumber property is a unique production number assigned by the manufacturer of the device. This is
often stamped on the outside of the device and may be used for traceability and warranty purposes. This
property is derived from ComponentType defined in OPC 10000-100.

The Manufacturer property provides the name of the company that manufactured the device. This property is
derived from ComponentType defined in OPC 10000-100.

The Model property provides the name of the product. This property is derived from ComponentType defined in
OPC 10000-100.

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC 10000-100.

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The vendor, integrator or user of the device provides the ID. It contains typically an identifier in a branch, use
case or user specific naming scheme.

This could be for example a reference to an electric scheme. For electric schemes typically EN 81346-2 is used.

A use case could be to build up a location-oriented view in a spare part management client software. It enables
to identify parts with the same article number which is not possible if this entry is not used.

This property is defined by ComponentType defined in OPC 10000-100.

IsDrivenBy is a reference to provide a relationship from a motor to a drive, which can be a multi-slot-drive or
single slot drive. The TypeDefinition of the reference destination as BaseObjectType provides the possibility to
point to a slot of a multi-slot-drive or a motor-integrated-drive. If this reference points to a physical drive (and
not a drive slot) it should point to an DriveType.

Annex B.10 shows different possibilities of usage.

Description of ParameterSet of MotorType:

– Variable BrakeReleased: The BrakeReleased is an optional variable used only for motors with brakes. If
BrakeReleased is TRUE the motor is free to run. FALSE means that the motor shaft is locked by the brake.

– Variable MotorTemperature: The MotorTemperature provides the temperature of the motor. If there is no
temperature sensor the value is set to “null”.

– Variable EffectiveLoadRate: EffectiveLoadRate is expressed as a percentage of maximum continuous load.
The Joule integral is typically used to calculate the current load, i.e.:

𝐼2𝑡 = ∫ 𝑖2 𝑑𝑡
𝑡1

𝑡0

 Duration should be defined and documented by the vendor.

7.6 GearType Definition

7.6.1 Overview

The GearType describes a gear in a power train, e.g. a gear box or a spindle. It is formally defined in
Table 20.

Page 43
 Draft VDMA 40010-1:2025-06

2:ComponentType

GearType

PropertyType:

2:SerialNumber

PropertyType:

2:Manufacturer

PropertyType:

2:Model

PropertyType:

2:ProductCode

PropertyType:

2:AssetId

RationalNumberType

GearRatio

BaseDataVariableType:

Pitch

Figure 17 – Overview GearType

Page 44
Draft VDMA 40010-1:2025-06

7.6.2 GearType definition

Table 20 – GearType Definition

Attribute Value

BrowseName GearType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Other

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI), inheriting the InstanceDeclarations of that Node

0:HasProperty Variable 2:SerialNumber 0:String 0:PropertyType M

0:HasProperty Variable 2:Manufacturer 0:LocalizedText 0:PropertyType M

0:HasProperty Variable 2:Model 0:LocalizedText 0:PropertyType M

0:HasProperty Variable 2:ProductCode 0:String 0:PropertyType M

0:HasComponent Variable GearRatio 0:RationalNumber 0:RationalNumberType M

0:HasComponent Variable Pitch 0:Double 0:BaseDataVariableType O

0:HasProperty Variable 2:AssetId 0:String 0:PropertyType O

Conformance Units

Rob Gear CM Extended

Rob Gear AM Extended

In case of a one-to-one relation between powertrains and axes, gear ratio and pitch may reflect the relation
between motor and axis velocities. This is not possible when axis coupling is involved because different ratios
for all motor-axis combinations may be needed. Additionally, there could be a nonlinear coupling between the
load side of the gear box and the axis. Thus, GearRatio and Pitch only reflect the properties of the physical gear
box and it may not be possible to use these values to transform between axis and motor movements.

The SerialNumber property is a unique production number assigned by the manufacturer of the device. This is
often stamped on the outside of the device and may be used for traceability and warranty purposes. This
property is derived from ComponentType defined in OPC 10000-100.

The Manufacturer property provides the name of the company that manufactured the device. This property is
derived from ComponentType defined in OPC 10000-100.

The Model property provides the name of the product. This property is derived from ComponentType defined in
OPC 10000-100.

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC 10000-100.

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The vendor, integrator or user of the device provides the ID. It contains typically an identifier in a branch, use
case or user specific naming scheme. This could be for example a reference to an electric scheme. For electric
schemes typically EN 81346-2 is used. A use case could be to build up a location-oriented view in a spare part
management client software. It enables to identify parts with the same article number which is not possible if
this entry is not used. This property is defined by ComponentType defined in OPC 10000-100.

GearRatio is the transmission ratio of the gear expressed as a fraction as input velocity (motor side) by output
velocity (load side).

Pitch describes the distance covered in millimetres (mm) for linear motion per one revolution of the output side
of the driving unit. Pitch is used in combination with GearRatio to describe the overall transmission from input
to output of the gear.

Calculation formula:

𝐿𝑖𝑛𝑒𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡

𝐺𝑒𝑎𝑟𝑅𝑎𝑡𝑖𝑜
× 𝑃𝑖𝑡𝑐ℎ

7.7 SafetyStateType ObjectType Definition

7.7.1 Overview

SafetyStateType describes the safety states of the motion devices and controllers. One motion device
system is associated with one or more instances of the SafetyStateType.

Page 45
 Draft VDMA 40010-1:2025-06

The SafetyStateType was modelled directly in the MotionDeviceSystemType for the following reasons:

– The manufacturers of systems have different concepts where safety is functional located, e.g. the
hardware and software implementation.

– The safety state typically applies to the entire robotic system. If multiple safety state instances are
implemented in robotic systems, these can be represented by individual instances of the
SafetyStateType and associated with the controller by reference.

The safety state is for informational purpose only and not intended for use with functional safety applications as
defined in ISO 61508.

The SafetyStateType is formally defined in Table 21.

BaseDataVariableType:

OperationalMode

BaseDataVariableType:

EmergencyStop

BaseDataVariableType:

ProtectiveStop

SafetyStateType

2:ParameterSet

FolderType

EmergencyStop Functions
EmergencyStopFunctionType:

<EmergencyStopFunctionIdentifier>

FolderType

ProtectiveStop Functions
ProtectiveStopFunctionType:

<ProtectiveStopFunctionIdentifier>

2:ComponentType
PropertyType:

2:ComponentName

Figure 18 – Overview SafetyStateType

7.7.2 SafetyStateType definition

Table 21 – SafetyStateType Definition

Attribute Value

BrowseName SafetyStateType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Other

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI), inheriting the InstanceDeclarations of that Node

0:HasComponent Object EmergencyStopFunctions 0:FolderType O

0:HasComponent Object ProtectiveStopFunctions 0:FolderType O

0:HasComponent Object 2:ParameterSet 0:BaseObjectType M

0:HasProperty Variable 2:ComponentName 0:LocalizedText 0:PropertyType O

Conformance Units

Rob MotionDeviceSystem Base

Rob Emergency Stop Function

Rob Protective Stop Function

Page 46
Draft VDMA 40010-1:2025-06

The components of the SafetyStateType have additional subcomponents which are defined in Table 22.

Table 22 – SafetyStateType Additional Subcomponents

Source Path Reference NodeCl
ass

BrowseName DataType TypeDefinition Othe
rs

EmergencyStopFu
nctions

0:HasComp
onent

Object <EmergencyStopFunction
Identifier>

 EmergencyStopFunct
ionType

MP

ProtectiveStopFun
ctions

0:HasComp
onent

Object <ProtectiveStopFunctionI
dentifier>

 ProtectiveStopFuncti
onType

MP

2:ParameterSet 0:HasComp
onent

Variable OperationalMode OperationalModeEnu
meration

0:BaseDataVariableT
ype

M

2:ParameterSet 0:HasComp
onent

Variable EmergencyStop 0:Boolean 0:BaseDataVariableT
ype

M

2:ParameterSet 0:HasComp
onent

Variable ProtectiveStop 0:Boolean 0:BaseDataVariableT
ype

M

The ComponentName property provides a user writeable name provided by the vendor, integrator, or user of
the device. The ComponentName may be a default name given by the vendor. This property is defined by
ComponentType defined in OPC 10000-100.

EmergencyStopFunctions is a container for one or more instances of the EmergencyStopFunctionType. The
number and names of emergency stop functions is vendor specific. When provided, this object contains a list of
all emergency stop functions with names and current state. See description of EmergencyStopFunctionType for
examples of emergency stop functions.

ProtectiveStopFunctions is a container for one or more instances of the ProtectiveStopFunctionType. The
number and names of protective stop functions is vendor specific. When provided, this object contains a list of
all protective stop functions with names and current state. See description of ProtectiveStopFunctionType for
examples of protective stop functions.

Description of ParameterSet of SafetyStateType:

– The OperationalMode variable provides information about the current operational mode. Allowed values are
described in OperationalModeEnumeration (0).

– The EmergencyStop variable is TRUE if one or more of the emergency stop functions in the robot system
are active, FALSE otherwise. If the EmergencyStopFunctions object is provided, then the value of this
variable is TRUE if one or more of the listed emergency stop functions are active.

– The ProtectiveStop variable is TRUE if one or more of the enabled protective stop functions in the system
are active, FALSE otherwise. If the ProtectiveStopFunctions object is provided, then the value of this
variable is TRUE if one or more of the listed protective stop functions are enabled and active.

7.8 EmergencyStopFunctionType ObjectType Definition

7.8.1 Overview

According to ISO 10218-1:2011 Ch.5.5.2 Emergency stop, the robot shall have one or more emergency stop
functions. This shall be done with the help of the EmergencyStopFunctionType is defined in Table 23.

7.8.2 EmergencyStopFunctionType definition

Table 23 – EmergencyStopFunctionType Definition

Attribute Value

BrowseName EmergencyStopFunctionType

References Node

Class

BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the BaseObjectType defined in OPC Unified Architecture

0:HasProperty Variable Name 0:String 0:PropertyType M

0:HasComponent Variable Active 0:Boolean 0:BaseDataVariableType M

Conformance Units

Rob Emergency Stop Function

Page 47
 Draft VDMA 40010-1:2025-06

The Name of the EmergencyStopFunctionType provides a manufacturer-specific emergency stop function
identifier within the safety system. The only named emergency stop function in the ISO 10218-1:2011 standard
is the "Pendant emergency stop function". Other than that, the standard does not give any indication on naming
of emergency stop functions.

The Active variable is TRUE if this emergency stop function is active, e.g. that the emergency stop button is
pressed, FALSE otherwise.

7.9 ProtectiveStopFunctionType ObjectType Definition

7.9.1 Overview

According to ISO 10218-1:2011 Ch.5.5.3 the robot shall have one or more protective stop functions designed
for the connection of external protective devices. This type is formally defined in Table 24

7.9.2 ProtectiveStopFunctionType definition

Table 24 – ProtectiveStopFunctionType Definition

Attribute Value

BrowseName ProtectiveStopFunctionType

References NodeClass BrowseName DataType TypeDefinition Others

Subtype of the BaseObjectType defined in OPC Unified Architecture

0:HasProperty Variable Name 0:String 0:PropertyType M

0:HasComponent Variable Enabled 0:Boolean 0:BaseDataVariableType M

0:HasComponent Variable Active 0:Boolean 0:BaseDataVariableType M

Conformance Units

Rob Protective Stop Function

The Name of the ProtectiveStopFunctionType provides a manufacturer-specific protective stop function
identifier within the safety system.

The Enabled variable is TRUE if this protective stop function is currently supervising the system, FALSE
otherwise. A protective stop function may or may not be always enabled, e.g. the protective stop function of the
safety doors is typically enabled in automatic operational mode and disabled in manual mode. On the other
hand, for example, the protective stop function of the teach pendant enabling device is enabled in manual modes
and disabled in automatic modes.

The Active variable is TRUE if this protective stop function is active, i.e. that a stop is initiated, FALSE otherwise.
If Enabled is FALSE then Active shall be FALSE.

Examples

The table below shows an example with a door interlock function. In this example, the door is only monitored
during automatic modes. During manual modes, the operators may open the door without causing a protective
stop.

Table 25 – Door Interlock Protective Stop Example

Automatic Mode Manual Mode

Door interlock Enabled Active Enabled Active

Door closed TRUE FALSE FALSE FALSE

Door open TRUE TRUE FALSE FALSE

The next example shows how the three-position enabling device normally found on teach pendants is
processed. In this case it does not matter if the enabling device is pressed or not during automatic modes, while
in manual modes, a protective stop is active if the enabling device is released or fully pressed.

Page 48
Draft VDMA 40010-1:2025-06

Table 26 – Teach Pendant Enabling Device Protective Stop Example

Automatic Mode Manual Mode

Teach Pendant Enabling Device Enabled Active Enabled Active

Released FALSE FALSE TRUE TRUE

Middle position FALSE FALSE TRUE FALSE

Fully pressed (panic) FALSE FALSE TRUE TRUE

7.10 OperationStateMachineType Definition

The OperationStateMachineType provides an abstract state machine for operation. The state machine
can be used for entities whose states can be represented by Idle, Ready or Executing and which can
be started and stopped.

At the system and task control levels, concrete state machine types are derived from the
OperationStateMachineType. The states of these state machines can be further enhanced with
substate machines.

The overview of the state machine with all transitions is shown in Figure 19.

Idle Ready Executing

Stop()
ExecutingToReady

Start()
ReadyToExecuting

ReadyToIdle

IdleToReady

ExecutingToIdle

IdleToIdle

Figure 19 – OperationStateMachine.

0:FiniteStateMachineType:
OperationStateMachineType

0:StateType
Idle

0:StateType
Ready

0:StateType
Executing

0:CurrentState

0:LastTransition

LastTransitionReason

Start

Stop

PossibleStopModes

ConfiguredDefaultStopMode

Figure 20 – The OperationStateMachineType

Page 49
 Draft VDMA 40010-1:2025-06

Figure 20 shows the OPC UA representation of the OperationStateMachineType, the transitions
between the states have not been shown for the sake of simplicity. The OperationStateMachineType
is formally defined in Table 77.

Table 27 – OperationStateMachineType Definition

Attribute Value

BrowseName OperationStateMachineType

IsAbstract True

References Node Class BrowseName DataType TypeDefinition Other

Subtype of the FiniteStateMachineType defined in OPC 10000-5.

0:HasComponent Variable LastTransitionReason 0:Int16 0:MultiStateValueDiscrete

Type

M

0:HasComponent Variable PossibleStopModes 0:EnumValueType[] 0:BaseDataVariableType O

0:HasComponent Variable ConfiguredDefaultStopMode 0:Int16 0:BaseDataVariableType O

0:HasComponent Object Idle 0:StateType

0:HasComponent Object Ready 0:StateType

0:HasComponent Object Executing 0:StateType

0:HasComponent Object ReadyToIdle 0:TransitionType

0:HasComponent Object IdleToReady 0:TransitionType

0:HasComponent Object ExecutingToReady 0:TransitionType

0:HasComponent Object ReadyToExecuting 0:TransitionType

0:HasComponent Object ExecutingToIdle 0:TransitionType

0:HasComponent Object IdleToIdle 0:TransitionType

0:HasComponent Method Start O

0:HasComponent Method Stop O

Inherited from FiniteStateMachineType

0:HasComponent Variable LastTransition 0:LocalizedText 0:FiniteTransitionVariableT

ype

M

0:GeneratesEvent ObjectType TransitionEventType O

The states of the OperationStateMachineType are described in Table 28.

The component Variables of the OperationStateMachineType have additional Attributes defined in
Table 30.

Table 28 – OperationStateMachineType State Descriptions

StateName Description

Idle Entity is not in a condition to start execution.

Ready Entity is in a condition to start execution.

Executing Entity is in a condition of execution.

The Variable LastTransitionReason provides the reason for the LastTransition. The EnumValue and
ValueAsText of this 0:MultiStateValueDiscreteType are described in Table 29. This specification does
not define an explicit error state. The LastTransitionReason indicates if a state change was caused
due to an error.

Table 29 – Values for LastTransitionReason

EnumValue ValueAsText Description

0 Unknown Caused by an unknown reason

1 External Caused by external operation

2 Direct Caused by direct operation

3 System Caused by system specific behaviour

4 Error Caused by an error

5 Application Caused explicitly by end user program logic

Page 50
Draft VDMA 40010-1:2025-06

The component Variables of the OperationStateMachineType have additional Attributes defined in
Table 30.

Table 30 – OperationStateMachineType Attribute values for child nodes

BrowsePath Value Attribute Description
Attribute

LastTransitionReason

0:EnumValues

[

{"Value":0,"DisplayName":"Unknown","Description":"Caused by an unknown
reason"},

{"Value":1,"DisplayName":"External","Description":"Caused by external
operation"},

{"Value":2,"DisplayName":"Direct","Description":"Caused by direct operation"},

{"Value":3,"DisplayName":"System","Description":"Caused by system specific
behavior"},

{"Value":4,"DisplayName":"Error", "Description": "Caused by an error"},

{"Value":5,"DisplayName":"Application","Description":"Caused explicitly by end
user program logic"}

]

LastTransitionReason EnumValues 1 and 2 describe where an operation was initiated, which reasoned
the last transition. External means that the operation was initiated by a control station, which is not
part of the robot system, e.g a cell PLC. Direct means that the operation was initiate d by a control
station, which is part of the robot system, e.g. the teach pendant.

The Variable PossibleStopModes is an array of EnumValueType, which contains a list of supported stop
modes (see Table 31.

Table 31 – PossibleStopMode Array Values

Nr. Stop Mode Description

1 OnPath Stop program execution in a controlled manner along the
programmed path.

2 EndOfCycle Stop program execution when the current production cycle has
been finished.

3 ProcessStop Application dependent stop instruction that stops program
execution at a "favourable" point for the application, e.g. at the
end of a paint stroke or sealing bead.

4 QuickStop This stop is performed by ramping down motion as fast as
possible using optimum motor performance. The robot may not
stay on the path.

5 EndOfInstruction This stop can be used to stop the program execution when the
current instruction is completed.

>=1000 Reserved for other OPC UA Companion Specifications

>=2000 Used for vendor specific stop modes

Page 51
 Draft VDMA 40010-1:2025-06

Table 32 – OperationStateMachineType Attribute values for child nodes

BrowsePath Value Attribute Description
Attribute

PossibleStopModes [

{"Value": 1, "DisplayName": "OnPath", "Description": "Stop program execution in
a controlled manner along the programmed path"},

{"Value": 2, "DisplayName": "EndOfCycle", "Description": "Stop program
execution when the current production cycle has been finished"},

{"Value": 3, "DisplayName": "ProcessStop", "Description": "Application
dependent stop instruction that stops program execution at a favourable point
for the application, e.g. at the end of a paint stroke or sealing bead"},

{"Value": 4, "DisplayName": "QuickStop", "Description": "This stop is performed
by ramping down motion as fast as possible using optimum motor performance.
The robot may not stay on the path”},

{"Value": 5, "DisplayName": "EndOfInstruction", "Description": "This stop can be
used to stop the program execution when the current instruction is completed"}

]

The Variable ConfiguredDefaultStopMode is an integer, which contains the value of the configured
stop mode for this system. This shall be one of the values in the PossibleStopModes array.

The Variable LastTransition, inherited from the FiniteStateMachineType, is defined as mandatory in
the OperationStateMachineType.

The transitions of the OperationStateMachineType are described in Table 33.

Table 33 – OperationStateMachineType Transition Descriptions

TransitionName Description

IdleToReady Changes from Idle to Ready.

IdleToIdle Changes from Idle to Idle.

ReadyToIdle Changes from Ready to Idle.

ReadyToExecuting Changes from Ready to Executing.

ExecutingToReady Changes from Executing to Ready.

ExecutingToIdle Changes from Executing to Idle.

Page 52
Draft VDMA 40010-1:2025-06

The components of the OperationStateMachineType have additional references which are defined in
Table 81.

Table 34 – OperationStateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

IdleToIdle 0:FromState True Idle

0:ToState True Idle

0:HasEffect True TransitionEventType

IdleToReady 0:FromState True Idle

 0:ToState True Ready

 0:HasEffect True TransitionEventType

ReadyToIdle 0:FromState True Ready

 0:ToState True Idle

 0:HasEffect True TransitionEventType

ReadyToExecuting 0:FromState True Ready

0:ToState True Executing

0:HasCause True Start

0:HasEffect True TransitionEventType

ExecutingToReady 0:FromState True Executing

0:ToState True Ready

0:HasCause True Stop

0:HasEffect True TransitionEventType

ExecutingToIdle 0:FromState True Executing

0:ToState True Idle

0:HasEffect True TransitionEventType

The component Variables of the OperationStateMachine have additional Attributes defined in the table
below.

Table 35 – OperationStateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

Idle

0:StateNumber

1

Ready

0:StateNumber

2

Executing

0:StateNumber

3

IdleToIdle

0:TransitionNumber

1

IdleToReady

0:TransitionNumber

2

ReadyToIdle

0:TransitionNumber

3

ReadyToExecuting

0:TransitionNumber

4

ExecutingToReady

0:TransitionNumber

5

ExecutingToIdle

0:TransitionNumber

6

7.10.1 Start Method

The signature of this Method is specified below.

Page 53
 Draft VDMA 40010-1:2025-06

Signature

Start (

[out] 0:Int32 Status

);

The Start Method is called by a Client to start execution of the entity which is represented by the state machine.

Table 36 – Start Method Arguments

Argument Description

Status 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

The possible Method result codes are formally defined in Table 37.

Table 37 – Method Result Codes (defined in Call Service)

Result Code Description

Good The operation succeeded

Bad_InternalError The operation failed because of an internal error

Bad_ResourceUnavailable The Method cannot be executed because a required resource is locked.

Bad_UserAccessDenied The caller is not allowed to execute this Method.

The Start Method representation in the AddressSpace is formally defined in table below.

Table 38 – Start Method AddressSpace definition.

Attribute Value

BrowseName Start

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType 0:Mandatory

7.10.2 Stop Method

The signature of this Method is specified below.

Signature

Stop (

[in] 0:Int64 StopMode

[out] 0:Int32 Status

);

The Stop Method is called by a Client to stop execution of the entity which is represented by the state machine.

Table 39 –Stop Method Arguments

Argument Description

StopMode provides a way to differentiate between different stop modes. This parameter should
correspond to one of the values in the PossibleStopModes array.

Status 0 – OK

Values > 0 are reserved for errors defined by this and future standards.

Values < 0 shall be used for application-specific errors.

The possible Method result codes are formally defined in Table 40.

Table 40 - Method Result Codes (defined in Call Service)

Result Code Description

Good The operation succeeded

Bad_InternalError The operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

Page 54
Draft VDMA 40010-1:2025-06

The Stop Method representation in the AddressSpace is formally defined in the table below.

Table 41 – Stop Method AddressSpace definition.

Attribute Value

BrowseName Stop

References NodeClass BrowseName DataType TypeDefinition Others

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType M

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType M

7.11 SystemOperationType ObjectType

7.11.1 Overview

The SystemOperationType is an AddIn Type to extend instances of ControllerType described in 7.18. The
SystemOperationType provides a state machine to monitor and/or command the controller behaviour at the
system level and is formally defined in Table 42.

Robot systems may have conditions that must be acknowledged before some operational commands can be
executed.

The system has two possibilities to enable the Client to acknowledge conditions.

• By exposing at least one instance of AcknowledgeableConditionType inside the Server’s
AddressSpace located within the Conditions folder as defined in the ConformanceUnit
RobAckCondInstance.

• By handling such conditions using the OPC UA Eventing mechanisms as defined in the
ConformanceUnit RobAckCondEventing.

OperationStateMachineType:
SystemOperationStateMachineType

SystemOperationlStateMachine

SystemOperationType
0:DefaultInstanceBrowseName

Value=SystemOperation

0:AcknowledgeableConditionType:
<RobAckCondition>

0:FolderType:
Conditions

Figure 21 – SystemOperationType Overview

7.11.2 SystemOperationType definition

The SystemOperationType is formally defined in Table 42.

Page 55
 Draft VDMA 40010-1:2025-06

Table 42 – SystemOperationType Definition

Attribute Value

BrowseName SystemOperationType

IsAbstract False

References Node

Class

BrowseName DataType TypeDefinition Other

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasComponent Object SystemOperationStateMachine SystemOperationStateMachineTy

pe

M

0:HasComponent Object Conditions 0:FolderType O

0:HasProperty Variable 0:DefaultInstanceBrowseName 0:QualifiedName 0:PropertyType

ConformanceUnits

Rob System Monitor

Rob System Operation

Rob RobAckCondInstance

The Object SystemOperationStateMachine provides a state machine to monitor or command the
controller at the system level. The SystemOperationStateMachineType is inherited from the
OperationStateMachineType.

The folder Conditions (part of the ConformanceUnit RobAckCondInstance) provides instances of
AcknowledgeableConditionType for the acknowledgement of single conditions or instances of
MultiAcknowledgeableConditionType (see 8.1) for the acknowledgement of multiple conditions.

The Property 0:DefaultInstanceBrowseName of the SystemOperationType has an additional Attribute defined
in

Table 44.

Table 43 – SystemOperationType additional subcomponents

BrowsePath References NodeClass BrowseName DataType TypeDefinition Others

Conditions Organizes Object <AcknowledgeableCondition>

AcknowledgeableConditionType MP

Table 44 – SystemOperationType Attribute values for child Nodes

BrowsePath Value Attribute Description Attribute

0:DefaultInstanceBrowseName SystemOperation

7.12 SystemOperationStateMachineType

The SystemOperationStateMachineType represents the behaviour of a controller at the system level
and can be used for monitoring and for external or direct operation. In robot systems, a distinction is
typically made between external and direct operation, depending on the OperationalMode (see 7.7.2).

If the system takes a significant amount of time to transition from the Idle State to the Ready State,
the Idle State can be extended by the sub state machine IdleSubstateMachine. Alternatively, a
vendor/application specific substate machine may also be used.

For certain stop modes, the transition from the Executing State to the Ready State can take a
significant amount of time. In such cases, the Executing State can be extended by the sub state
machine ExecutingSubstateMachine. Alternatively, an application or vendor specific substate machine
may also be used.

The substate machines enable the client to get more information during the transition.

Page 56
Draft VDMA 40010-1:2025-06

The SystemMonitor Server Facet supports monitoring of the activities performed by the operator or
system internally. (e.g. monitor condition changes and base causes) The SystemOperation Server
Facet extends on the SystemMonitor Server Facet and adds support to operate the system.

The overview of the SystemOperationStateMachine with the IdleSubstateMachine as substate machine
of Idle State and the ExecutingSubstateMachine as substate machine of Executing State with all
transitions is shown in Figure 8.

The transitions in this state machine can occur due to internal processes of the system or they may be
triggered by a method call. In case the transition is triggered by a method call, the transition might not
occur immediately (e.g. it will be delayed unt il internal conditions are met).

Ready

Stop()*
ExecutingToReady

Start()
ReadyToExecuting

StandDown()
ReadyToIdle

ExecutingToIdle

Idle
StandByToGettingReady

Getting
Ready

StandBy

GettingReadyToStandBy

GetReady()*
IdleToReady

StandDown()
IdleToIdle *The transition evaluation gets triggered by the method call

When all conditions are met, the transition occurs

Executing

RunningToStopping StoppingRunning

Figure 22– SystemOperationStateMachine.

0:FiniteStateMachineType
OperationStateMachineType

GetReady

StandDown

SystemOperationStateMachineType

0:StateType
Idle

IdleSubStateMachineType
IdleSubstateMachine

HasSubStateMachine

ExecutingSubStateMachineType
ExecutingSubstateMachine

0:StateType
ExecutingHasSubStateMachine

0:CurrentState
0:CurrentState

0:StateType
Ready

0:LastTransition

LastTransitionReason
Start

Stop
0:EnumValueType[]
PossibleStopModes

ConfiguredDefaultStopMode

Figure 23 – SystemOperationStateMachineType.

The SystemOperationStateMachineType is formally defined in Table 45.

Page 57
 Draft VDMA 40010-1:2025-06

Table 45 – SystemOperationStateMachineType Definition

Attribute Value

BrowseName SystemOperationStateMachineType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Other

Subtype of the OperationStateMachineType

0:HasComponent Object IdleSubstateMachine IdleSubstateMachineType O

0:HasComponent Object ExecutingSubstateMachine ExecutingSubstateMachine

Type

O

Inherited from OperationStateMachineType

0:HasComponent Variable LastTransitionReason 0:Int16 0:MultiStateValueDiscrete

Type

M

0:HasComponent Variable PossibleStopModes 0:EnumValueType[] 0:BaseDataVariableType O

0:HasComponent Variable ConfiguredDefaultStopMo

de

0:Int16 0:BaseDataVariableType O

0:HasComponent Object Idle 0:StateType

0:HasComponent Object Ready 0:StateType

0:HasComponent Object Executing 0:StateType

0:HasComponent Object ReadyToIdle 0:TransitionType

0:HasComponent Object IdleToReady 0:TransitionType

0:HasComponent Object ExecutingToReady 0:TransitionType

0:HasComponent Object ReadyToExecuting 0:TransitionType

0:HasComponent Object ExecutingToIdle 0:TransitionType

0:HasComponent Object IdleToIdle 0:TransitionType

0:HasComponent Method Start O

0:HasComponent Method Stop O

0:HasComponent Method StandDown O

0:HasComponent Method GetReady O

0:HasComponent Variable LastTransition 0:LocalizedText 0:FiniteTransitionVariableT

ype

M

0:GeneratesEvent ObjectType TransitionEventType O

ConformanceUnits

Rob System Monitor

Rob System Operation

Rob System Events

Rob System IdleSubstate

Rob System ExecutingSubstate

The Idle State of SystemOperationStatemachineType has additional subcomponents which are defined
in Table 46

Table 46 – SystemOperationStateMachineType Additional Subcomponents

Browsepath References Node

Class

BrowseName DataTy

pe

TypeDefinition Other

Idle 0:HasSubStateMachine Object IdleSubstateMachine IdleSubstateMachineType O

Executing 0:HasSubStateMachine Object ExecutingSubstateMachine ExecutingSubstateMachineT

ype

O

To acknowledge the state changes in a system the Conditions within the Conditions folder of
SystemOperationType must be taken under consideration. A client might need to acknowledge them
so that the robot system can be activated. (e.g. operational mode change requires acknowledgement
to start the system)

Page 58
Draft VDMA 40010-1:2025-06

Table 47 – SystemOperationStateMachineType State Descriptions

StateName Description

Idle The system is available, but cannot be started because preparation is needed

Ready The system is ready to start execution.

Executing The system is executing. Typically, at least one task control is executing, however it is a system

specific behaviour.

Table 48 – SystemOperationStateMachine Transition Descriptions

TransitionName Description

IdleToIdle Occurs in response to StandDown(), internal events, or when preparations to get the system

ready are unsuccessful.

IdleToReady Occurs in response to GetReady() or internal events, when preparations to get the system

ready are successful.

ReadyToIdle Occurs in response to StandDown() or internal events.

ReadyToExecuting Occurs in response to Start() or internal events.

ExecutingToReady Occurs in response to Stop() or internal events when the system has come to a stop

ExecutingToIdle Occurs in response to internal events (typically in case of an error)

The components of the SystemOperationStateMachineType have additional references which are
defined in the table below.

Table 49 – SystemOperationStateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

IdleToIdle 0:FromState True Idle

 0:ToState True Idle

0:HasCause True StandDown

0:HasEffect True TransitionEventType

IdleToReady 0:FromState True Idle

0:ToState True Ready

0:HasCause True GetReady

0:HasEffect True TransitionEventType

ReadyToIdle 0:FromState True Ready

 0:ToState True Idle

 0:HasCause True StandDown

 0:HasEffect True TransitionEventType

ReadyToExecuting 0:FromState True Ready

0:ToState True Executing

0:HasCause True Start

0:HasEffect True TransitionEventType

ExecutingToIdle 0:FromState True Executing

0:ToState True Idle

0:HasEffect True TransitionEventType

ExecutingToReady 0:FromState True Executing

0:ToState True Ready

0:HasCause True Stop

0:HasEffect True TransitionEventType

The component Variables of the SystemOperationStateMachineType have additional Attributes defined
in the table below.

Page 59
 Draft VDMA 40010-1:2025-06

Table 50 – SystemOperationStateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

Idle

0:StateNumber

1

Ready

0:StateNumber

2

Executing

0:StateNumber

3

IdleToIdle

0:TransitionNumber

1

IdleToReady

0:TransitionNumber

2

ReadyToIdle

0:TransitionNumber

3

ReadyToExecuting

0:TransitionNumber

4

ExecutingToReady

0:TransitionNumber

5

ExecutingToIdle

0:TransitionNumber

6

7.12.1 Start Method

The signature of this Method is specified below.

Signature

Start (

[out] 0:Int32 Status

);

The Start Method is called by a Client to start execution of the system that is represented by the state machine.
If the method is successfully called, the method should return with a Good or Uncertain result code.

The Start Method allows an authorized Client to command the system to the Executing State.

Table 51 – Start Method Arguments

Argument Description

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The possible Method result codes are formally defined in Table 52

Table 52 - Method Result Codes (defined in Call Service)

Result Code Description

Good The system level operation succeeded

Uncertain The value is uncertain. A concrete reason is defined in the Status Output-Argument.

Bad_InternalError The method could not be called due to an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The Start Method representation in the AddressSpace is formally defined in Table 53.

Page 60
Draft VDMA 40010-1:2025-06

Table 53 – Start Method AddressSpace definition.

Attribute Value

BrowseName Start

References NodeClass BrowseName DataType TypeDefinition Others

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType M

ConformanceUnits

Rob System Operation

7.12.2 Stop Method

The signature of this Method is specified below.

Signature

Stop (

[in] 0:Int64 StopMode

[out] 0:Int32 Status

);

The Stop Method allows an authorized Client to command the system to stop executing and leave the Executing
state.

In conjunction with the usage of this method, the transient states can be expressed with substate machines
within the Executing state (e.g. the ExecutingSubstateMachine in 7.14)

The input argument StopMode must be either 0 or one of those listed in the PossibleStopModes Variable (see
Table 31). If not, then a Bad_InvalidArgument Result Code is returned.

Table 54 – Stop Method Arguments

Argument Description

StopMode must either be 0 or one of those listed in the PossibleStopModes
Variable (see Table 31.

Table 31)

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The possible Method result codes are formally defined in Table 55

Table 55 - Method Result Codes (defined in Call Service)

Result Code Description

Good The system level operation succeeded

Bad_InternalError The system level operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

Bad_InvalidArgument The input argument is invalid

The Stop Method representation in the AddressSpace is formally defined in Table 56

Page 61
 Draft VDMA 40010-1:2025-06

Table 56 – Stop Method AddressSpace definition.

Attribute Value

BrowseName Stop

References NodeClass BrowseName DataType TypeDefinition Others

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType M

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType M

ConformanceUnits

Rob System Operation

7.12.3 GetReady Method

The signature of this Method is specified below.

Signature

GetReady (

[out] 0:Int32 Status

);

The GetReady Method allows an authorized Client to request the system to transition from the Idle state to the
Ready state. Internally the system prepares to get started in the next step (e.g. switching on the intermediate
circuit). If the internal preparations for this transition are successful, the system will transition from Idle to Ready.
If the internal preparations are unsuccessful then the IdleToIdle transition occurs.

In conjunction with the usage of this method, the transient states can be expressed with substate machines
within the Idle state (e.g. the IdleSubstateMachine in 7.13)

Table 57 – GetReady Method Arguments

Argument Description

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The possible Method result codes are formally defined in Table 58

Table 58 - Method Result Codes (defined in Call Service)

Result Code Description

Good The system level operation succeeded

Bad_InternalError The system level operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The Start Method representation in the AddressSpace is formally defined in Table 59.

Table 59 – GetReady Method AddressSpace definition

Attribute Value

BrowseName GetReady

References NodeClass BrowseName DataType TypeDefinition Others

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType M

ConformanceUnits

Rob System Operation

Page 62
Draft VDMA 40010-1:2025-06

7.12.4 StandDown Method

The signature of this Method is specified below.

Signature

StandDown (

[out] 0:Int32 Status

);

The StandDown method allows an authorized Client to request the system to:

• transition from the Ready state to the Idle state or

• cancel an ongoing preparation of the system and causes the IdleToIdle transition.

Table 60 – StandDown Method Arguments

Argument Description

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

In conjunction with the usage of this method, the transient states can be expressed with substate machines
within the Idle state (e.g. the IdleSubstateMachine in 7.13)

The possible Method result codes are formally defined in Table 61.

Table 61 - Method Result Codes (defined in Call Service)

Result Code Description

Good The system level operation succeeded

Bad_InternalError The system level operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The StandDown Method representation in the AddressSpace is formally defined in Table 62.

Table 62 – StandDown Method AddressSpace definition

Attribute Value

BrowseName StandDown

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType M

ConformanceUnits

Rob System Operation

7.13 IdleSubstateMachineType

The IdleSubstateMachineType, a substate machine of the Idle State of the
SystemOperationStateMachine, represents a mechanism to prepare a system in a way that it will reach
Ready State of the SystemOperationStateMachine after preparation.

The overview of the IdleSubstateMachine with all transitions is shown in Figure 24.

Page 63
 Draft VDMA 40010-1:2025-06

StandByToGettingReady

Getting
Ready

StandBy

GettingReadyToStandBy

Figure 24 – IdleSubstateMachine

7.13.1 Overview

0:StateType
GettingReady

0:FiniteStateMachineType
IdleSubstateMachineType

0:StateType
StandBy

LastTransitionReason

Figure 25 – IdleSubstateMachineType Overview

The IdleSubstateMachineType is formally defined in Table 63.

Table 63 – IdleSubstateMachineType Definition

Attribute Value

BrowseName IdleSubstateMachineType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Other

Subtype of the FiniteStateMachineType defined in OPC 10000-5

0:HasComponent Variable LastTransitionReason 0:Int16 0:MultiStateValueDiscreteType M

0:HasComponent Object StandBy 0:InitialStateType

0:HasComponent Object GettingReady 0:StateType

0:HasComponent Object StandByToGettingReady 0:TransitionType

0:HasComponent Object GettingReadyToStandBy 0:TransitionType

0:HasComponent Variable LastTransition 0:LocalizedText 0:FiniteTransitionVariableType M

0:GeneratesEvent ObjectType TransitionEventType O

ConformanceUnits

Rob System IdleSubstate

Rob System Events

The Variable LastTransitionReason provides the reason for the LastTransition. The EnumValue and
ValueAsText of this 0:MultiStateValueDiscreteType are described in the table below.

Page 64
Draft VDMA 40010-1:2025-06

Table 64 – IdleSubstateMachineType Attribute values for child nodes

BrowsePath Value Attribute Description
Attribute

LastTransitionReason

0:EnumValues

[

{"Value":0,"DisplayName":"Unknown","Description":"Caused by an unknown
reason"},

{"Value":1,"DisplayName":"External","Description":"Caused by external
operation"},

{"Value":2,"DisplayName":"Direct","Description":"Caused by direct operation"},

{"Value":3,"DisplayName":"System","Description":"Caused by system specific
behavior"},

{"Value":4,"DisplayName":"Error", "Description": "Caused by an error"},

{"Value":5,"DisplayName":"Application","Description":"Caused explicitly by end
user program logic"}

]

The states of the IdleSubstateMachineType are described in Table 65.

Table 65 – IdleSubstateMachineType State Descriptions

StateName Description

StandBy The system is available, but cannot be started because a preparation is needed

GettingReady The system was commanded to get ready (internally or via GoToReady()) and the needed

preparation to get ready is done in this state by the system.

In the GettingReady state the system prepares what is to be done (e.g. switching on intermediate

circuit) to be ready to start execution in a next step. Typically, all task controls which participate in

system functionality are in in Ready (or Executing) state before calling the GoToReady() method on

system level.

When the preparation is done successfully the IdleSubstateMachine will be left and the Ready state

of the SystemOperationStateMaschine will be entered.

The ongoing preparation can be interrupted by calling the GoToStandBy Method.

The transitions are described in Table 66.

Table 66 – IdleSubstateMachineType Transition Descriptions

TransitionName Description

StandByToGettingReady Changes from StandBy to GettingReady because the preparation was initiated.

GettingReadyToStandBy Changes from GettingReady to StandBy because the preparation was aborted.

The components of the IdleSubstateMachineType have additional references which are defined in
Table 67.

Table 67 – IdleSubstateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

StandByToGettingReady 0:FromState True StandBy

0:ToState True GettingReady

0:HasEffect True TransitionEventType

GettingReadyToStandBy 0:FromState True GettingReady

0:ToState True StandBy

0:HasEffect True TransitionEventType

The component Variables of the IdleSubstateMachineType have additional Attributes defined in Table
68.

Page 65
 Draft VDMA 40010-1:2025-06

Table 68 – IdleSubstateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

StandBy

0:StateNumber

1

GettingReady

0:StateNumber

2

StandByToGettingReady

0:TransitionNumber

1

GettingReadyToStandBy

0:TransitionNumber

2

7.14 ExecutingSubstateMachineType

The ExecutingSubstateMachineType, a substate machine of Executing State of the
SystemOperationStateMachine, represents a mechanism for describing the stopping behaviour of the
system. This can be used to display the stopping behaviour in more detail depending on the StopMode
commanded.

The overview of the ExecutingSubstateMachine with all transitions is shown in Figure 8.

RunningToStopping StoppingRunning

Figure 26 – ExecutingSubstateMachine

7.14.1 Overview

0:StateType
Stopping

0:FiniteStateMachineType
ExecutingSubstateMachineType

0:StateType
Running

LastTransitionReason

Figure 27 – ExecutingSubstateMachineType Overview

The ExecutingSubstateMachineType is formally defined in the table below.

Page 66
Draft VDMA 40010-1:2025-06

Table 69 – ExecutingSubstateMachine Type Definition

Attribute Value

BrowseName ExecutingSubstateMachineType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Other

Subtype of the FiniteStateMachineType defined in OPC 10000-5

0:HasComponent Variable LastTransitionReason 0:Int16 0:MultiStateValueDiscrete

Type

M

0:HasComponent Object Running 0:InitialStateType

0:HasComponent Object Stopping 0:StateType

0:HasComponent Object RunningToStopping 0:TransitionType

Inherited from FiniteStateMachineType

0:HasComponent Variable LastTransition 0:LocalizedText 0:FiniteTransitionVariableT

ype

M

0:GeneratesEvent ObjectType TransitionEventType O

ConformanceUnits

Rob System ExecutingSubstate

Rob System Events

The Variable LastTransitionReason provides the reason for the LastTransition. The EnumValues of
this 0:MultiStateValueDiscreteType are described in Table 70.

Table 70 – ExecutingSubstateMachineType Attribute values for child nodes

BrowsePath Value Attribute Description
Attribute

LastTransitionReason

0:EnumValues

[

{"Value":0,"DisplayName":"Unknown","Description":"Caused by an unknown
reason"},

{"Value":1,"DisplayName":"External","Description":"Caused by external
operation"},

{"Value":2,"DisplayName":"Direct","Description":"Caused by direct operation"},

{"Value":3,"DisplayName":"System","Description":"Caused by system specific
behavior"},

{"Value":4,"DisplayName":"Error", "Description": "Caused by an error"},

{"Value":5,"DisplayName":"Application","Description":"Caused explicitly by end
user program logic"}

]

The states of the ExecutingSubstateMachineType are described in Table 71.

Table 71 – ExecutingSubstateMachineType State Descriptions

StateName Description

Running The system is available, but cannot started because a preparation is needed

Stopping The system was commanded to stop (internally or via Stop() and the needs some time for necessary

background processes before entering the Ready state.

The transitions are described in Table 72.

Table 72 – ExecutingSubstateMachineType Transition Descriptions

TransitionName Description

RunningToStopping Changes from Running to Stopping because a system stop was initiated.

Page 67
 Draft VDMA 40010-1:2025-06

The components of the ExecutingSubstateMachineType have additional references which are defined
in the table below.

Table 73 – ExecutingSubstateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

RunningToStopping 0:FromState True Running

0:ToState True Stopping

0:HasEffect True TransitionEventType

The component Variables of the IdleSubstateMachineType have additional Attributes defined in the
table below.

Table 74 – ExecutingSubstateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

Running

0:StateNumber

1

Stopping

0:StateNumber

2

RunningToStopping

0:TransitionNumber

1

7.15 TaskControlOperationType ObjectType

The TaskControlOperationType is an AddIn to extend instances of TaskControlType described in 7.21.
It provides the possibility to handle programs with designated task controls. The task controls may be
started manually or in a system context by use of SystemOperation.

The TaskControlOperationType provides a state machine to monitor or control a task control and
information about which motion devices are controlled by this task control and is formally defined in
Table 75.

7.15.1 Overview

OperationStateMachineType:
TaskControlStateMachineType

0:DefaultInstanceBrowseName
Value=TaskControlOperation

TaskControlStateMachine

TaskControlOperationType

MotionDevicesUnderControl

Figure 28 – TaskControlOperationType Overview

Page 68
Draft VDMA 40010-1:2025-06

Table 75 – TaskControlOperationType Definition

Attribute Value

BrowseName TaskControlOperationType

IsAbstract False

References Node

Class

BrowseName DataType TypeDefinition Other

Subtype of the BaseObjectType defined in OPC 10000-5.

0:HasProperty Variable MotionDevicesUnderControl 0:NodeId[] 0:PropertyType O, RO

0:HasComponent Object TaskControlStateMachine TaskControlStateMachineType M

0:HasProperty Variable 0:DefaultInstanceBrowseName 0:QualifiedName 0:PropertyType

ConformanceUnits

Rob Task Control Monitor

Rob Task Control Operation

Rob TC MD Relationship

The optional Variable MotionDevicesUnderControl provides an array of NodeIds pointing to instances

of MotionDeviceType described in 7.2, which are under control of this task control, in combination with
the loaded program.

The Object TaskControlStateMachine provides a state machine to monitor or to control the task
controls which instantiated the TaskControlOperationType.

The Property 0:DefaultInstanceBrowseName of the TaskControlOperationType has an additional
Attribute defined in Table 76.

Table 76 – TaskControlOperationType Attribute values for child Nodes

BrowsePath Value Attribute Description Attribute

0:DefaultInstanceBrowseName TaskControlOperation

7.16 TaskControlStateMachineType

The TaskControlStateMachineType represents the behaviour of a task control and can be used for
monitoring or for remote control.

To provide information about the condition of a program loaded inside a task control and the possibility
to reset the loaded program the Ready State can be extended by the ReadySubstateMachineType.

The Task Control Monitor ConformanceUnit supports monitoring of the activities done by the operator
or system internally. The Task Control Operation ConformanceUnit supports additional operations by
Methods.

The overview of the state machine with all transitions is shown in

Figure 29

When the state machine changes from Executing State to Ready State caused by internal behaviour
of the task control (e.g. because program is ended) it is expected that the task control can be started
immediately again e.g. by the Start() method. So, the application may set the loaded program to its
entry point (like the ResetToProgramStart Method) while transition ExecutingToReady or when the
Start() Method is called, that no additional reset of the program is needed.

Ready

Idle
Executing

Stop()
ExecutingToReady

Start()
ReadyToExecuting

ReadyToIdle
UnloadProgram()
UnloadByName()

UnloadByNodeId()

LoadByNodeId()
LoadByName()

IdleToReady

Suspended
ResetToProgramStart()

SuspendedToProgramStartAtProgramStart

IdleToIdle

ExecutingToIdle

Page 69
 Draft VDMA 40010-1:2025-06

Figure 29 – TaskControl State Machine with ReadySubstateMachine in Ready State

7.16.1 Overview

OperationStateMachineType
TaskControlStateMachineType

0:StateType
Idle

0:StateType
Ready

0:StateType
Executing

Start

Stop

LoadByNodeId

LoadByName

HasSubStateMachine

ReadySubStateMachineType
ReadySubStateMachine

LastTransitionReason

UnloadProgram

UnloadByNodeId

UnloadByName

Figure 30 – TaskControlStateMachineType with the ReadySubstateMachine

The TaskControlStateMachineType is formally defined in Table 77.

Page 70
Draft VDMA 40010-1:2025-06

Table 77 – TaskControlStateMachineType Definition

Attribute Value

BrowseName TaskControlStateMachineType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Other

Subtype of the OperationStateMachineType

0:HasComponent Object ReadySubstateMach

ine

 ReadySubstateMachineType O

0:HasComponent Method LoadByNodeId O

0:HasComponent Method LoadByName O

0:HasComponent Method UnloadProgram O

0:HasComponent Method UnloadByNodeId O

0:HasComponent Method UnloadByName O

Inherited from OperationStateMachineType

0:HasComponent Variable LastTransitionReaso

n

0:Int16 0:MultiStateValueDiscreteTy

pe

M

0:HasComponent Variable PossibleStopModes 0:EnumValueType[] 0:BaseDataVariableType O

0:HasComponent Variable ConfiguredDefaultSt

opMode

0:Int16 0:BaseDataVariableType O

0:HasComponent Object Idle 0:StateType

0:HasComponent Object Ready 0:StateType

0:HasComponent Object Executing 0:StateType

0:HasComponent Object IdleToIdle 0:TransitionType

0:HasComponent Object ReadyToIdle 0:TransitionType

0:HasComponent Object IdleToReady 0:TransitionType

0:HasComponent Object ExecutingToReady 0:TransitionType

0:HasComponent Object ReadyToExecuting 0:TransitionType

0:HasComponent Object ExecutingToIdle 0:TransitionType

0:HasComponent Method Start O

0:HasComponent Method Stop O

0:HasComponent Variable LastTransition 0:LocalizedText 0:FiniteTransitionVariableTy

pe

M

0:GeneratesEvent ObjectType TransitionEventType O

ConformanceUnits

Rob Task Control Monitor

Rob Task Control Operation

Rob Task Control ReadySubstate

Rob System Events

The Ready State of TaskControlStateMachineType has additional subcomponents which are defined
in Table 78.defined in

Table 78 – TaskControlStateMachineType Additional Subcomponents

Source
Path

Reference NodeClass BrowseName DataType TypeDefinition Others

Ready 0:HasSubStateMachine Object ReadySubstateMachine ReadySubstateMachineType O

The states of the TaskControlStateMachineType are described in Table 79.

Page 71
 Draft VDMA 40010-1:2025-06

Table 79 – TaskControlStateMachineType State Descriptions

 StateName Description

Idle The task control is not loaded with a program.

Ready The task control is loaded with a program and is not executing the program.

Executing The task control is loaded with a program and is executing the program.

If the task control automatically starts the program at the beginning, after reaching the end, it shall

stay in Executing state (continuously executing).

The transitions are described in the table below.

Table 80 – TaskControlStateMachineType Transition Descriptions

TransitionName Description

IdleToIdle Occurs if the program could not be loaded correctly

IdleToReady Occurs in response to LoadProgram() or internal events, when loading a program to the task

control

ReadyToIdle Occurs in response to UnloadProgram() or internal events, when unloading a program from

the task control.

ReadyToExecuting Occurs in response to Start() or internal events, when starting a loaded program in the task

control.

ExecutingToReady Occurs in response to Stop() or internal events, when stopping a loaded program in the task

control.

ExecutingToIdle Occurs in response to internal events, when stopping a loaded program in the task control and

unloading the task control.

Page 72
Draft VDMA 40010-1:2025-06

The componentts of the TaskControlStateMachineType have additional references which are defined
in Table 81.

Table 81 – TaskControlStateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

IdleToIdle 0:FromState True Idle

0:ToState True Idle

0:HasEffect True TransitionEventType

IdleToReady 0:FromState True Idle

0:ToState True Ready

0:HasCause True LoadByNodeId

0:HasCause True LoadByName

0:HasEffect True TransitionEventType

ReadyToIdle 0:FromState True Ready

0:ToState True Idle

0:HasCause True UnloadProgram

0:HasCause True UnloadByNodeId

0:HasCause True UnloadByName

0:HasEffect True TransitionEventType

ReadyToExecuting 0:FromState True Ready

0:ToState True Executing

0:HasCause True Start

0:HasEffect True TransitionEventType

ExecutingToReady 0:FromState True Executing

0:ToState True Ready

0:HasCause True Stop

0:HasEffect True TransitionEventType

ExecutingToIdle 0:FromState True Executing

0:ToState True Idle

0:HasEffect True TransitionEventType

The component Variables of the TaskControlStateMachineType have additional Attributes defined in
Table 82.

Table 82 – TaskControlStateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

Idle

0:StateNumber

1

Ready

0:StateNumber

2

Executing

0:StateNumber

3

IdleToIdle

0:TransitionNumber

1

IdleToReady

0:TransitionNumber

2

ReadyToIdle

0:TransitionNumber

3

ReadyToExecuting

0:TransitionNumber

4

ExecutingToReady

0:TransitionNumber

5

ExecutingToIdle

0:TransitionNumber

6

Page 73
 Draft VDMA 40010-1:2025-06

7.16.2 LoadByNodeId Method

The signature of this Method is specified below.

Signature

LoadByNodeId (

 [in] 0:ExpandedNodeId Id

 [out] 0:Int32 Status

);

Table 83 specifies the Arguments.

Table 83 – LoadByNodeId Method Arguments

Argument Description

Id ExpandedNodeId pointing to an instance of FileType representing a task control
program or module

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The LoadByNodeId Method is called by a Client to load a program or a module into a task control.

For the storage of programs, the Server may support the Programs folder defined within the ControllerType.
(see 7.18). This method can be used to load the program or module into the Task Control if the program or
module itself is available in the address space (e.g. within the Programs folder). The Id input argument shall be
used to identify the program in the address space. This method can be a synchronous or an asynchronous
method. In case it is a synchronous method, the return output arguments may contain more information about
the Success or Failure of the method call. If the system is in the Idle state when the method is called, and
something goes wrong internally then instead of the IdleToReady transition, the IdleToIdle transition shall be
observed by the client. If the system is already in the Ready state and the LoadByNodeId is called and fails, it
is system dependent, whether the system goes back to the Idle state or remains in the Ready state. Calling
LoadByNodeId in the Executing state will fail in normal circumstances.

The possible Method result codes are formally defined in Table 84. Some of these StatusCodes correspond to
the ProgramId input argument.

Clients may inspect the Status output argument to determine if the program was successfully loaded or if it
failed.

Table 84 - Method Result Codes (defined in Call Service)

Result Code Description

Good The task control operation succeeded

Bad_InternalError The task control operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

Bad_NodeIdUnknown The NodeId refers to a non-existent TCProgram.

Bad_NodeIdInvalid The syntax of the NodeId is not valid.

The LoadByNodeId Method representation in the AddressSpace is formally defined in Table 85.

Page 74
Draft VDMA 40010-1:2025-06

Table 85 – LoadByNodeId Method AddressSpace definition

Attribute Value

BrowseName LoadByNodeId

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType M

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType M

ConformanceUnits

Rob Task Control Operation

7.16.3 LoadByName Method

The signature of this Method is specified below.

Signature

LoadByName (

 [in] 0:String Name

 [out] 0:Int32 Status

);

The table below specifies the Arguments.

Table 86 – LoadByName Method Arguments

Argument Description

Name Name to identify a task control program or module

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The LoadByName Method is called by a Client to load a program or module to a task control. The controller
uses the Name input argument to identify the program or module to load into the task control. The behaviour of
this method is identical to the LoadByNodeId (see 7.16.2).

The possible Method result codes are formally defined in the table below. Some of these
StatusCodes correspond to the Name input argument.

Clients may inspect the Status output argument to determine if the program was successfully loaded or if it
failed.

Table 87 - Method Result Codes (defined in Call Service)

Result Code Description

Good The task control operation succeeded

Bad_InternalError The task control operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The LoadByName Method representation in the AddressSpace is formally defined in the table below.

Table 88 – LoadByName Method AddressSpace definition

Attribute Value

BrowseName LoadByName

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType 0:Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType 0:Mandatory

ConformanceUnits

Rob Task Control Operation

Page 75
 Draft VDMA 40010-1:2025-06

7.16.1 UnloadProgram Method

The signature of this Method is specified below.

Signature

UnloadProgram (

 [out] 0:Int32 Status

);

The table below specifies the Arguments.

Table 89 – UnloadProgram Method Arguments

Argument Description

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The UnloadProgram Method is called by a Client to unload the program from a task control.

The possible Method result codes are formally defined in the table below.

Table 90 - Method Result Codes (defined in Call Service)

Result Code Description

Good The task control operation succeeded

Bad_InternalError The task control operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The UnloadProgram Method representation in the AddressSpace is formally defined in the table below.

Table 91 – UnloadProgram Method AddressSpace definition

Attribute Value

BrowseName UnloadProgram

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType 0:Mandatory

ConformanceUnits

Rob Task Control Operation

7.16.2 UnloadByNodeId Method

The signature of this Method is specified below.

Signature

UnloadByNodeId (

 [in] 0:ExpandedNodeId Id

 [out] 0:Int32 Status

);

Table 92 specifies the Arguments.

Page 76
Draft VDMA 40010-1:2025-06

Table 92 – UnloadByNodeId Method Arguments

Argument Description

Id Expanded NodeId of the module to be unloaded

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The UnloadByNodeId Method is called by a Client to unload a task module from a task control. This only works
if the task modules are expressed in the address space (7.22).

The possible Method result codes are formally defined in the table below.

Table 93 - Method Result Codes (defined in Call Service)

Result Code Description

Good The task control operation succeeded

Bad_InternalError The task control operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The UnloadByNodeId Method representation in the AddressSpace is formally defined in Table 94. This method
might not always result in a state change from Ready to Idle.

Table 94 – UnloadByNodeId Method AddressSpace definition

Attribute Value

BrowseName UnloadByNodeId

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType 0:Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType 0:Mandatory

ConformanceUnits

Rob Task Control Operation

7.16.3 UnloadByName Method

The signature of this Method is specified below.

Signature

UnloadByName (

 [in] 0:String Name

 [out] 0:Int32 Status

);

Table 95 specifies the Arguments.

Table 95 – UnloadByName Method Arguments

Argument Description

Name Name of the module to be unloaded

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

Page 77
 Draft VDMA 40010-1:2025-06

The UnloadByName Method is called by a Client to unload a module from a task control. This can be used to
unload the task modules if they are not expressed in the address space and internal logic is used to find the
module to be unloaded based on the Name input argument.

This method might not always result in a state change from Ready to Idle.

The possible Method result codes are formally defined in the table below.

Table 96 - Method Result Codes (defined in Call Service)

Result Code Description

Good The task control operation succeeded

Bad_InternalError The task control operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The UnloadByName Method representation in the AddressSpace is formally defined in the table below.

Table 97 – UnloadByName Method AddressSpace definition

Attribute Value

BrowseName UnloadByName

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType 0:Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType 0:Mandatory

ConformanceUnits

Rob Task Control Operation

7.16.4 Start Method

The signature of this Method is specified below.

Signature

Start (

 [out] 0:Int32 Status

);

Table 98 specifies the Arguments.

Table 98 – Start Method Arguments

Argument Description

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The Start method can only be successfully called when the task control is in the Ready state. Depending on the
program pointer, the system shall attempt to start executing from the beginning of the program or continue
executing from where it was suspended (See substate machine description of this state in 7.17).

The possible Method result codes are formally defined in Table 99.

Page 78
Draft VDMA 40010-1:2025-06

Table 99 - Method Result Codes (defined in Call Service)

Result Code Description

Good The task control operation succeeded

Bad_InternalError The task control operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The Start Method representation in the AddressSpace is formally defined in Table 100.

Table 100 – Start Method AddressSpace definition.

Attribute Value

BrowseName Start

References NodeClass BrowseName DataType TypeDefinition Others

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType M

ConformanceUnits

Rob Task Control Operation

7.16.5 Stop Method

The signature of this Method is specified below.

Signature

Stop (

[in] 0:Int64 StopMode

[out] 0:Int32 Status

);

Table 101 specifies the Arguments.

Table 101 – StopMethod Arguments

Argument Description

StopMode must either be 0 or one of those listed in the PossibleStopModes
Variable (see Table 31.

Table 31)

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The Stop Method allows an authorized Client to command the task control to stop executing and leave the
Executing state and go to the Ready state. If the ReadySubstateMachine (see 7.17) is present, the task control
shall be in the Suspended state of the substate machine.

The input argument StopMode must be either 0 or one of those listed in the PossibleStopModes Variable (see
Section). If not, then a Bad_InvalidArgument Result Code is returned.

The possible Method result codes are formally defined in the table below.

Page 79
 Draft VDMA 40010-1:2025-06

Table 102 – Method Result Codes (defined in Call Service)

Result Code Description

Good The task control operation succeeded

Bad_InternalError The task control operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The Stop Method representation in the AddressSpace is formally defined in Table 103.

Table 103 – Stop Method AddressSpace definition.

Attribute Value

BrowseName Stop

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:InputArguments 0:Argument[] 0:PropertyType 0:Mandatory

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType 0:Mandatory

ConformanceUnits

Rob Task Control Operation

7.17 ReadySubstateMachineType

The ReadySubstateMachineType represents the condition of a program loaded into a task control
(TaskControlStateMachine is in Ready State). The state machine has two states to distinguish whether
the program pointer is at an initial program position (AtProgramStart) or anywhere else in the program
(Suspended). It provides the information whether the program pointer is at the start or in the middle of
the program. The method ResetToProgramStart can be used to set the program pointer to the start of
the program. The state after entering this state machine depends on the program pointer position.

The TaskControlReadyMonitor ConformanceUnit defines monitoring of the ReadySubstateMachine.
The TaskControlReadyReinitalize ConformanceUnit defines additionally the reinitialization of the
program by a method.

The overview of the state machine with all transitions is shown in Figure 31.

Suspended
ResetToProgramStart()

SuspendedToProgramStartAtProgramStart

Figure 31 – ReadySubstateMachine

Page 80
Draft VDMA 40010-1:2025-06

7.17.1 Overview

0:FiniteStateMachineType:
ReadySubstateMachineType

0:StateType
AtProgramStart ResetToProgramStart

LastTransitionReason0:StateType
Suspended

Figure 32 – ReadySubstateMachineType Overview

The ReadySubstateMachineType is formally defined in Table 104.

Table 104 – ReadySubstateMachineType Definition

Attribute Value

BrowseName ReadySubstateMachineType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Other

Subtype of the FiniteStateMachineType defined in OPC 1000-5

0:HasComponent Variable LastTransitionReason 0:Int16 0:MultiStateValueDiscreteTy

pe

M

0:HasComponent Object AtProgramStart 0:StateType

0:HasComponent Object Suspended 0:StateType

0:HasComponent Object ProgramStartToSuspended 0:TransitionType

0:HasComponent Object SuspendedToProgramStart 0:TransitionType

0:HasComponent Method ResetToProgramStart O

Inherited from FiniteStateMachineType

0:HasComponent Variable LastTransition 0:LocalizedText 0:FiniteTransitionVariableTy

pe

M

0:GeneratesEvent ObjectType TransitionEventType O

ConformanceUnits

Rob Task Control ReadySubstate

Rob Task Control Ready Reset

The Variable LastTransitionReason provides the reason for the LastTransition. The EnumValue and
ValueAsText of this 0:MultiStateValueDiscreteType are described in Table 105.

Table 105 – ReadySubstateMachineType Attribute values for child nodes

BrowsePath Value Attribute Description
Attribute

LastTransitionReason

0:EnumValues

[

{"Value":0,"DisplayName":"Unknown","Description":"Caused by an unknown
reason"},

{"Value":1,"DisplayName":"External","Description":"Caused by external
operation"},

{"Value":2,"DisplayName":"Direct","Description":"Caused by direct operation"},

{"Value":3,"DisplayName":"System","Description":"Caused by system specific
behavior"},

{"Value":4,"DisplayName":"Error", "Description": "Caused by an error"},

{"Value":5,"DisplayName":"Application","Description":"Caused explicitly by end
user program logic"}

]

Page 81
 Draft VDMA 40010-1:2025-06

The states of the ReadySubstateMachineType are described in Table 106.

Table 106 – ReadySubstateMachineType State Descriptions

StateName Description

AtProgramStart The program pointer of the program loaded in the task control is at the starting point.

Suspended The program pointer of the program loaded in the task control is anywhere in the program, but not

at starting point.

The components of the ReadySubstateMachineType have additional references which are defined in
Table 107.

Table 107 – ReadySubstateMachineType Additional References

SourceBrowsePath Reference Type Is Forward TargetBrowsePath

ProgramStartToSuspended 0:FromState True AtProgramStart

0:ToState True Suspended

0:HasEffect True TransitionEventType

SuspendedToProgramStart 0:FromState True Suspended

0:ToState True AtProgramStart

0:HasEffect True TransitionEventType

0:HasCause True ResetToProgramStart

The transitions are described in Table 108 – ReadySubstateMachineType Transition Descriptions .

Table 108 – ReadySubstateMachineType Transition Descriptions

TransitionName Description

ProgramStartToSuspended Changes from AtProgramStart to Suspended,

SuspendedToProgramStart Changes from Suspended to AtProgramStart because program was restarted. (Direct, External,

System)

The component Variables of the ReadySubstateMachineType have additional Attributes defined in
Table 109.

Table 109 – ReadySubstateMachineType Attribute values for child Nodes

BrowsePath Value Attribute

AtProgramStart

0:StateNumber

1

Suspended

0:StateNumber

2

ProgramStartToSuspended

0:TransitionNumber

1

SuspendedToProgramStart

0:TransitionNumber

2

7.17.2 ResetToProgramStart Method

The signature of this Method is specified below. .

Signature

ResetToProgramStart (

 [out] 0:Int32 Status

);

Page 82
Draft VDMA 40010-1:2025-06

Tabelle 110 specifies the Arguments.

Table 110 – ResetToProgramStart Method Arguments

Argument Description

Status 0 – OK – Everything is OK

1 – E_SystemState – The system is not in correct state for this operation

2 – E_UnexpectedError – Unexpected Error during the method call

3 – E_ActiveAlarm – An Active Alarm prevents the system start

4 – E_AcknowledgeRequired – Condition needs to be acknowledged

<0 – shall be used for vendor-specific errors.

>0 – are reserved for errors defined by this and future standards

The ResetToProgramStart Method is called by a Client to set the program pointer to the starting point of the
program.

The possible Method result codes are formally defined in the table below.

Table 111 - Method Result Codes (defined in Call Service)

Result Code Description

Good The operation succeeded

Bad_InternalError The operation failed because of an internal error

Bad_ResourceUnavailable The Method is locked by another Client/Clientgroup

Bad_UserAccessDenied The caller is not allowed to call this Method.

The ResetToProgramStart Method representation in the AddressSpace is formally defined in Table 112.

Table 112 – ResetToProgramStart Method AddressSpace definition

Attribute Value

BrowseName ResetToProgramStart

References NodeClass BrowseName DataType TypeDefinition ModellingRule

0:HasProperty Variable 0:OutputArguments 0:Argument[] 0:PropertyType M

ConformanceUnits

Task Control Ready Reset

7.18 ControllerType ObjectType Definition

7.18.1 Overview

The ControllerType describes the control unit of motion devices. One motion device system can have one
or more instances of the ControllerType. The ControllerType is formally defined in Table 113.

Page 83
 Draft VDMA 40010-1:2025-06

0:FileDirectoryType

Programs

HasAddin
SystemOperationType

SystemOperation

2:ParameterSet

2:ComponentType

ControllerType

0:PropertyType:

2:SerialNumber

0:PropertyType:

2:Manufacturer

0:PropertyType:

2:Model

0:PropertyType:

2:ProductCode

0:PropertyType:

2:AssetId

0:PropertyType:

2:DeviceManual

0:PropertyType:

2:ComponentName

0:FolderType

Components
2:ComponentType:

<ComponentIdentifier>

0:FolderType:

TaskControls
TaskControlType:

<TaskControlIdentifier>

2:SoftwareType:

<SoftwareIdentifier>
0:FolderType:

Software

UserType:

CurrentUser

Figure 33 – Overview ControllerType

7.18.2 ControllerType definition

Page 84
Draft VDMA 40010-1:2025-06

Table 113 – ControllerType Definition

Attribute Value

BrowseName ControllerType

IsAbstract False

References Node

Class

BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

0:HasProperty Variable 2:SerialNumber 0:String 0:PropertyType M

0:HasProperty Variable 2:Manufacturer 0:LocalizedText 0:PropertyType M

0:HasProperty Variable 2:Model 0:LocalizedText 0:PropertyType M

0:HasProperty Variable 2:ProductCode 0:String 0:PropertyType M

0:HasComponent Object CurrentUser UserType M

0:HasComponent Object Components 0:FolderType O

0:HasComponent Object Software 0:FolderType M

0:HasComponent Object TaskControls 0:FolderType M

0:HasComponent Object 2:ParameterSet 0:BaseObjectType O

HasSafetyStates Object <SafetyStatesIdentifier> SafetyStateType OP

0:HasComponent Object Programs 0:FileDirectoryType O

0:HasAddIn Object SystemOperation SystemOperationType O

Controls Object <MotionDeviceIdentifier> MotionDeviceType OP

0:HasProperty Variable 2:AssetId 0:String 0:PropertyType O

0:HasProperty Variable 2:DeviceManual 0:String 0:PropertyType O

0:HasProperty Variable 2:ComponentName 0:LocalizedText 0:PropertyType O

Conformance Units

Rob System Monitor

Rob System Operation

Rob Program File Directory

Rob System Events

Rob Controller AM Extended

Rob Controller AM Extended

Rob MotionDeviceSystem Base

The components of the ControllerType have additional subcomponents which are defined in Table 114.

Table 114 – ControllerType Additional Subcomponents

Source Path Reference NodeClass BrowseName DataType TypeDefinition Others

Components 0:HasComponent Object <ComponentIdentifier> 2:ComponentType MP

Software 0:HasComponent Object <SoftwareIdentifier> 2:SoftwareType MP

TaskControls 0:HasComponent Object <TaskControlIdentifier> TaskControlType MP

2:ParameterSet 0:HasComponent Variable TotalPowerOnTime DurationString 0:BaseDataVariableType O

2:ParameterSet 0:HasComponent Variable StartUpTime DateTime 0:BaseDataVariableType O

2:ParameterSet 0:HasComponent Variable UpsState 0:String 0:BaseDataVariableType O

2:ParameterSet 0:HasComponent Variable TotalEnergyConsumption 0:Double 0:AnalogUnitType O

2:ParameterSet 0:HasComponent Variable CabinetFanSpeed 0:Double 0:AnalogUnitType O

2:ParameterSet 0:HasComponent Variable CPUFanSpeed 0:Double 0:AnalogUnitType O

2:ParameterSet 0:HasComponent Variable InputVoltage 0:Double 0:AnalogUnitType O

2:ParameterSet 0:HasComponent Variable Temperature 0:Double 0:AnalogUnitType O

The SerialNumber property is a unique production number assigned by the manufacturer of the device. This is
often stamped on the outside of the device and may be used for traceability and warranty purposes. This
property is derived from ComponentType defined in OPC 10000-100.

The Manufacturer property provides the name of the company that manufactured the device. This property is
derived from ComponentType defined in OPC 10000-100.

The Model property provides the name of the product. This property is derived from ComponentType defined in
OPC 10000-100.

Page 85
 Draft VDMA 40010-1:2025-06

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC 10000-100.

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The vendor, integrator or user of the device provides the ID. It contains typically an identifier in a branch, use
case or user specific naming scheme. This could be for example a reference to an electric scheme. For electric
schemes typically EN 81346-2 is used. A use case could be to build up a location-oriented view in a spare part
management client software. It enables to identify parts with the same article number which is not possible if
this entry is not used. This property is defined by ComponentType defined in OPC 10000-100.

The DeviceManual property allows specifying an address of the user manual for the controller. It may be a
pathname in the file system or a URL (Web address). This property is defined by ComponentType defined in
OPC 10000-100.

The ComponentName property provides a user writeable name provided by the vendor, integrator, or user of
the device. The ComponentName may be a default name given by the vendor. This property is defined by
ComponentType defined in OPC 10000-100.

The CurrentUser object provides information about the active vendor specific user level of the controller.

Components is a container for one or more instances of subtypes of ComponentType defined in OPC 10000-
100. The listed components are installed in the motion device system, e.g. a processing-unit, a power-supply,
an IO-board, or a drive, and have an electrical interface to the controller.

NOTE: This specification recommends using the 3:Components folder defined in OPC 40001-1 instead of the
one defined in this specification above.

Table 115 – TypeDefinition of Components of ControllerType

Attribute Value

BrowseName Components

References Node

Class

BrowseName DataType TypeDefinition Modelling

Rule

0:HasComponent Object <ComponentIdentifier> 2:ComponentType MandatoryPlaceholder

The AuxiliaryComponentType and DriveType are the only subtypes of ComponentType for use in this container
which are described in this specification. The intention is to integrate inside this container devices which are
defined in other companion specifications using DI.

Software is a container for one or more instances of SoftwareType defined in OPC 10000-100. Each controller
has at least one software installed.

TaskControls is a container for one or more instances of TaskControlType.

Description of ParameterSet of ControllerType:

– Variable :The TotalPowerOnTime variable provides the total accumulated time the controller was powered
on.

– Variable StartUpTime: The StartUpTime variable provides the date and time of the last start-up of the
controller.

– Variable UpsState: The UpsState variable provides the vendor specific status of an integrated
uninterruptible power supply or accumulator system.

– Variable TotalEnergyConsumption: The TotalEnergyConsumption variable provides total accumulated
energy consumed by the motion devices related with this controller instance.

– Variable CabinetFanSpeed: The CabinetFanSpeed variable provides the speed of the cabinet fan.

– Variable CPUFanSpeed: The CPUFanSpeed variable provides the speed of the CPU fan.

– Variable InputVoltage: The InputVoltage variable provides the input voltage of the controller which can be
a configured value. To distinguish between an AC or DC supply the optional property Definition of the base
type DataItemType shall be used.

– Variable Temperature: The Temperature variable provides the controller temperature given by a
temperature sensor inside of the controller.

Page 86
Draft VDMA 40010-1:2025-06

To transfer programs for task controls from or to the controller a file directory named Programs can be
extended to instances of the ControllerType, which is the entry point for organizing programs. Within
this file directory programs can be organized in underlaying file directories. This file directory is a
virtual folder, so it does not need to be mapped to a folder naming and structure of the file system on
the controller.

The HasSafetyStates reference provides the relationship of safety states to a controller. The InverseName is
SafetyStatesOf.

The Controls reference provides the relationship of a motion device and controller. The InverseName is
IsControlledBy.

7.19 AuxiliaryComponentType ObjectType Definition

7.19.1 Overview

The AuxiliaryComponentType describes components mounted in a controller cabinet or a motion device
e.g. an IO-board or a power supply.

It is formally defined in Table 116.

This type should not be used for instances of components which represent a motor, a gear, or a drive
For these components this specification describes specific types.

PropertyType:

2:ProductCode

AuxiliaryComponentType

2:ComponentType
PropertyType:

2:AssetId

Figure 34 – Overview AuxiliaryComponentType

7.19.2 AuxiliaryComponentType definition

Table 116 – AuxiliaryComponentType Definition

Attribute Value

BrowseName AuxiliaryComponentType

IsAbstract False

References Node

Class

BrowseName DataType TypeDefinition Others

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

0:HasProperty Variable 2:ProductCode 0:String 0:PropertyType M

0:HasProperty Variable 2:AssetId 0:String 0:PropertyType O

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC 10000-100.

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The vendor, integrator or user of the device provides the ID. It contains typically an identifier in a branch, use
case or user specific naming scheme. This could be for example a reference to an electric scheme. For electric
schemes typically EN 81346-2 is used. A use case could be to build up a location-oriented view in a spare part
management client software. It enables to identify parts with the same article number which is not possible if
this entry is not used. This property is defined by ComponentType defined in OPC 10000-100.

Page 87
 Draft VDMA 40010-1:2025-06

7.20 DriveType ObjectType Definition

7.20.1 Overview

The DriveType describes drives (multi-slot or single-slot axis amplifier) mounted in a controller cabinet
or a motion device. When used inside a motion device it should be part of a power train. It is formally
defined in Table 117.

B.10.1 shows different possibilities of usage.

PropertyType:

2:ProductCode

DriveType

2:DeviceType
PropertyType:

2:AssetId

Figure 35 – Overview DriveType

7.20.2 DriveType definition

Table 117 – DriveType Definition

Attribute Value

BrowseName DriveType

IsAbstract False

References Node

Class

BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

0:HasProperty Variable 2:ProductCode 0:String 0:PropertyType M

The following instance declarations are not defined by this type, but by the supertype ComponentType are repeated here for better

readability

0:HasProperty Variable 2:AssetId 0:String 0:PropertyType O

The ProductCode property provides a unique combination of numbers and letters used to identify the product.
It may be the order information displayed on type shields or in ERP systems. This property is derived from
ComponentType defined in OPC 10000-100.

The AssetId property is a user writable alphanumeric character sequence uniquely identifying a component.
The vendor, integrator or user of the device provides the ID. It contains typically an identifier in a branch, use
case or user specific naming scheme. This could be for example a reference to an electric scheme. For electric
schemes typically EN 81346-2 is used. A use case could be to build up a location-oriented view in a spare part
management client software. It enables to identify parts with the same article number which is not possible if
this entry is not used. This property is defined by ComponentType defined in OPC 10000-100.

7.21 TaskControlType ObjectType Definition

7.21.1 Overview

TaskControlType represents instances of task controls of a controller and is formally defined in Table
118.

Page 88
Draft VDMA 40010-1:2025-06

The task control describes an execution engine that loads and runs task programs. One task runs one
task program at the time. The system should instantiate the maximum allowed number of task controls.

0:BaseDataVariableType:

TaskProgramLoaded

0:BaseDataVariableType:

TaskProgramName

ExecutionModeEnumeration:

ExecutionMode

0:BaseObjectType:

2:ParameterSet

0:PropertyType:

2:ComponentName

TaskControlType

2:ComponentType

HasAddin

RemoteTaskControlType

RemoteTaskControl

0:FolderType:

TaskModules

Figure 36 – Overview TaskControlType

Page 89
 Draft VDMA 40010-1:2025-06

7.21.2 TaskControlType definition

Table 118 – TaskControlType Definition

Attribute Value

BrowseName TaskControlType

IsAbstract False

References Node

Class

BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the ComponentType defined in OPC Unified Architecture for Devices (DI)

0:HasProperty Variable 2:ComponentName 0:LocalizedText 0:PropertyType M

0:HasComponent Object 2:ParameterSet 0:BaseObjectType M

Controls Object <MotionDeviceIdentifier> MotionDeviceType OP

0:HasAddIn Object TaskControlOperation TaskControlOperationType O

0:HasComponent Object TaskModules 0:FolderType O

Conformance Units

Rob Task Control CM Extended

Rob Task Control Monitor

Rob Task Control Operation

Rob Task Control Modules

Rob MotionDeviceSystem Base

The components of the TaskControlType have additional subcomponents which are defined in Table 119.

Table 119 – TaskControlType Additional Subcomponents

Source Path Reference NodeClass BrowseName DataType TypeDefinition Others

2:ParameterSet 0:HasComponent Variable TaskProgramName 0:String 0:BaseDataVariableType M

2:ParameterSet 0:HasComponent Variable TaskProgramLoaded 0:Boolean 0:BaseDataVariableType M

2:ParameterSet 0:HasComponent Variable ExecutionMode ExecutionModeEnumeration 0:BaseDataVariableType O

TaskModules 0:Organizes Object <TaskModule> TaskModuleType OP

The ComponentName property provides a user writeable name provided by the vendor, integrator, or user of
the device. The ComponentName of the TaskControlType provides a customer given identifier for the task
control or a default name given by the vendor. This property is derived from ComponentType defined in OPC
10000-100.

Object TaskModules is a folder of TaskModuleType (see 7.22) instances that provides more information about
the loaded task modules.

Description of ParameterSet of TaskControlType:

– Variable TaskProgramName: The TaskProgramName variable provides a customer given identifier for the
task program.

– Variable TaskProgramLoaded: The TaskProgramLoaded variable is TRUE if a task program is loaded in
the task control, FALSE otherwise.

– Variable ExecutionMode: The ExecutionMode variable tells how the task control executes the task program
(see 10.3).

Controls is a reference to provide the relationship between a task control and a motion device. The InverseName
is IsControlledBy.

7.22 TaskModuleType ObjectType Definition

7.22.1 Overview

TaskModuleType provides information about modules loaded on to the TaskControl. It is formally
defined in Table 118.

Page 90
Draft VDMA 40010-1:2025-06

7.22.2 TaskModuleType definition

Table 120 – TaskModuleType Definition

Attribute Value

BrowseName TaskModuleType

IsAbstract False

References Node

Class

BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the BaseObjectType defined in OPC Unified Architecture

0:HasProperty Variable Name 0:String 0:PropertyType M

0:HasProperty Variable Version 0:String 0:PropertyType O

0:HasProperty Variable IsReferenced 0:Boolean 0:PropertyType O

Conformance Units

Rob Task Control Modules

The components of the TaskControlType have additional subcomponents which are defined in Table 119.

Variable Name provides a name for the task module.

Variable Version provides a version information for the task module.

Variable IsReferenced provides a boolean flag to indicate if the module is referenced in other modules and/or
the program. This information can be useful to determine if the unloading of a module is possible.

7.23 LoadType ObjectType Definition

7.23.1 Overview

The LoadType is for describing loads mounted on the motion device typically by an integrator or a
customer and is formally defined in Table 121. Instances of this ObjectType definition are used to describe
the load mounted on one of several mounting points. A common mounting point is the flange of a motion device.
Typically, a motion device has additional mounting points on some of the axis. The provided values can either
be determined by the robot controller or can be set up by an operator.

AnalogUnitType:

Mass

FrameType:

CenterOfMass

BaseObjectType

LoadType

VectorType:

Inertia

Figure 37 – Overview LoadType

Page 91
 Draft VDMA 40010-1:2025-06

7.23.2 LoadType definition

Table 121 – LoadType Definition

Attribute Value

BrowseName LoadType

IsAbstract False

References Node

Class

BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the 0:BaseObjectType defined in OPC Unified Architecture

0:HasComponent Variable Mass 0:Double AnalogUnitType M

0:HasComponent Variable CenterOfMass 3DFrame 3DFrameType O

0:HasComponent Variable Inertia 3DVector 3DVectorType O

The variable Mass provides the weight of the load mounted on one mounting point. The EngineeringUnits of the
Mass shall be provided.

The variable CenterOfMass provides the position and orientation of the center of the mass related to the
mounting point using a 3DFrameType. X, Y, Z define the position of the center of gravity relative to the mounting
point coordinate system. A, B, C define the orientation of the principal axes of inertia relative to the mounting
point coordinate system. Orientation A, B, C can be "0" for systems which do not need these values.

If the instance of the LoadType describes the flange load of a motion device the mounting point coordinate
system is the flange coordinate system. If the instance of the LoadType describes an additional load of an axis
the mounting point coordinate system is vendor specific and it is up to the vendor to model this coordinate
system.

The variable Inertia uses the 3DVectorType to describe the three values of the principal moments of inertia with
respect to the mounting point coordinate system. If inertia values are provided for rotary axis the CenterOfMass
shall be provided as well.

Table 122 describes the possible degrees of modelling from a minimal one e.g. only the weight of the mass to
a complete one comprising weight, center of mass, principal axes, and inertia.

Table 122 – LoadType possible degrees of modelling

 Mass
CenterOfMass Inertia

X, Y, Z A, B, C

Mass only Used - - -

Mass with center of gravity Used Used 0, 0, 0 -

Mass with inertia Used Used Used Used

7.24 UserType ObjectType Definition

7.24.1 Overview

The UserType ObjectType describes information of the registered user groups within the control
system.

It is formally defined in Table 123.

Page 92
Draft VDMA 40010-1:2025-06

PropertyType

Level

PropertyType

Name

BaseObjectType

UserType

Figure 38 – Overview UserType

7.24.2 UserType definition

Table 123 – UserType Definition

Attribute Value

BrowseName UserType

IsAbstract False

References Node

Class

BrowseName DataType TypeDefinition Modelling

Rule

Subtype of the BaseObjectType defined in OPC Unified Architecture

0:HasProperty Variable Level 0:String 0:PropertyType M

0:HasProperty Variable Name 0:String 0:PropertyType O

Conformance Units

Rob MotionDeviceSystem Base

The Level property provides information about the access rights and determines what can be viewed, updated,
or deleted by a user. Depending on the user level different functionalities are available. The robot vendors might
use different descriptions and access levels for the users and might require authentication.

The Name property provides the name for the current user within the control system.

8 OPC UA ReferenceTypes

8.1 General

This section defines the ReferenceTypes that are inherent to the present companion specification. Figure 39
describes informally the hierarchy of these Reference Types. OPC UA Reference Types are defined in OPC
10000-3.

Page 93
 Draft VDMA 40010-1:2025-06

References

HierarchicalReferences

Controls

HasSafetyStatesMoves

IsDrivenBy

IsConnectedTo

Requires HasSlaves

NonHierarchicalReferences

Figure 39 – Reference Type Hierarchy

8.2 Controls (IsControlledBy) Reference Type

The OPC UA ReferenceType Controls is used to describe dependencies between objects which have a
controlling character. The BrowseName Controls and the InverseName IsControlledBy describe semantically
the hierarchical dependency e.g. a controlling device Controls a controlled machine module.

Example for usage in this companion specification: If one controller Controls several motion devices, each
motion device IsControlledBy the same controller.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 124 – Controls Reference Definition

Attributes Value

BrowseName Controls

InverseName IsControlledBy

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.3 Moves (IsMovedBy) Reference Type

The OPC UA ReferenceType Moves is used to describe the coupling between a power train and the axes from
the power train point of view. A power train has a Moves reference to all axis that are moving when only this
powertrain moves.

For examples see B.9.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Page 94
Draft VDMA 40010-1:2025-06

Table 125 – Moves Reference Definition

Attributes Value

BrowseName Moves

InverseName IsMovedBy

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.4 Requires (IsRequiredBy) Reference Type

The OPC UA ReferenceType Requires is used to describe the coupling between a power train and axes from
the axis point of view. An axis has a Requires reference to all powertrains that need to move such that only this
single axis moves.

For examples see Annex B.9.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 126 – Requires Reference Definition

Attributes Value

BrowseName Requires

InverseName IsRequiredBy

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.5 IsDrivenBy (Drives) Reference Type

The OPC UA ReferenceType IsDrivenBy is used to describe dependencies between objects which have a
driving or powering character. The BrowseName IsDrivenBy and the InverseName Drives describe semantically
the hierarchical dependency.

Example for usage in this companion specification: an electrical motor IsDrivenBy and servo amplifier (drive)
and an internal drive of a motion device or a drive as a component of a controller Drives a motor.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 127 – Drives Reference Definition

Attributes Value

BrowseName IsDrivenBy

InverseName Drives

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Page 95
 Draft VDMA 40010-1:2025-06

8.6 IsConnectedTo Reference Type

The OPC UA ReferenceType IsConnectedTo is used to describe dependencies between objects which are
mounted or mechanically linked or connected to each other. The IsConnectedTo reference is symmetric and
has no InverseName.

Example for usage in this companion specification: a motor IsConnectedTo to a gear and vice versa.

Typically, the reference is used to describe the relationships of motors and gears within the same powertrain.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 128 – IsConnectedTo Reference Definition

Attributes Value

BrowseName IsConnectedTo

InverseName

Symmetric True

IsAbstract False

Subtype of the NonHierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.7 HasSafetyStates (SafetyStatesOf) Reference Type

The OPC UA ReferenceType HasSafetyStates is used to describe dependencies between objects to show
which (controller) object is responsible for the execution of the safety-functionality. The BrowseName
HasSafetyStates and the InverseName SafetyStatesOf describe semantically the hierarchical dependency.

Example for usage in this companion specification: a controller HasSafetyStates and the reference shows to an
instance of SafetyStatesType. It is possible that there are two controller in one motion device system.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 129 – HasSafetyStates Reference Definition

Attributes Value

BrowseName HasSafetyStates

InverseName SafetyStatesOf

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

8.8 HasSlave (IsSlaveOf) Reference Type

The OPC UA ReferenceType HasSlave is a reference to provide the master-slave relationship of power trains
which provide torque for a common axis. The InverseName is IsSlaveOf.

The SourceNode of this type shall be an ObjectType or Object and the TargetNode shall be an Object.

Table 130 – HasSlave Reference Definition

Attributes Value

BrowseName HasSlave

InverseName IsSlaveOf

Symmetric False

IsAbstract False

Subtype of the HierarchicalReferences defined in OPC Unified Architecture Part 5

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Page 96
Draft VDMA 40010-1:2025-06

9 OPC UA EventTypes

9.1 MultiAcknowledgeableConditionType

Before commanding robot actions, a control source may need to acknowledge certain conditions first.
The information model provides two possibilities for a Client to acknowledge conditions of the system,
either with Instances of specific Events in the Address space or with the standard OPC UA Eventing
mechanism. The MultiAcknowledgeableConditionType may be used to simply the handling of multiple
conditions, which need to be acknowledged by a Client to use the SystemOperationStateMachine or
IdleSubstateMachine. Its representation in the AddressSpace is formally defined in Table 131.

AcknowledgeableConditionType

MultiAcknowledgeableConditionType

ConditionDescriptions

Figure 40 – MultiAcknowledgeableConditionType

Table 131 – MultiAcknowledgeableConditionType Definition

Attribute Value

BrowseName MultiAcknowledgeableConditionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the AcknowledgeableConditionType defined in OPC 10000-9, it inherits the InstanceDeclarations of that Node.

0:HasProperty Variable ConditionDescriptions 0:LocalizedText[] 0:PropertyType M

Conformance Units

Rob RobAckCondInstance

The MultiAcknowledgeableConditionType inherits all Properties of the
AcknowledgeableConditionType.

The Variable ConditionDescriptions provides in an Array of descriptions of all conditions, which need
acknowledgement.

When a Client calls the Acknowledge Method, the system tries to acknowledge all conditions described
in the ConditionDescriptions array at once. If a condition cannot be acknowledged (e.g. cable is broken)
and the condition is still active, the instance of the MultiAcknowledgeableConditionType stays in
AckedState False and the ConditionDescriptions are updated with all pending conditions.

There is a race condition here with respect to keeping the ConditionDescriptions array up to date,
however it is assumed that the logic behind starting the system will never be solely dependent on this
variable, but there will be internal checks to make sure that the system can safely start.

Confirmation of the MultiAcknowledgeableConditionType instances (using the optional Confirm
method, inherited from the AcknowledgeableConditionType) is undefined and out of scope.

Page 97
 Draft VDMA 40010-1:2025-06

10 OPC UA DataTypes

10.1 MotionDeviceCategoryEnumeration

MotionDeviceCategoryEnumeration provides the kind of motion device based on ISO 8373. It is defined in
Table 132.

Table 132 – MotionDeviceCategoryEnumeration Items

Name Value Description

OTHER 0 Any motion-device which is not defined by the MotionDeviceCategoryEnumeration

ARTICULATED_ROBOT 1 This robot design features rotary joints and can range from simple two joint structures

to 10 or more joints. The arm is connected to the base with a twisting joint. The links in

the arm are connected by rotary joints.

SCARA_ROBOT 2 Robot has two parallel rotary joints to provide compliance in a selected plane

CARTESIAN_ROBOT 3 Cartesian robots have three linear joints that use the Cartesian coordinate system (X, Y,

and Z). They also may have an attached wrist to allow for rotational movement. The

three prismatic joints deliver a linear motion along the axis.

SPHERICAL_ROBOT 4 The arm is connected to the base with a twisting joint and a combination of two rotary

joints and one linear joint. The axes form a polar coordinate system and create a

spherical-shaped work envelope.

PARALLEL_ROBOT 5 These spider-like robots are built from jointed parallelograms connected to a common

base. The parallelograms move a single end of arm tooling in a dome-shaped work area.

CYLINDRICAL_ROBOT 6 The robot has at least one rotary joint at the base and at least one prismatic joint to

connect the links. The rotary joint uses a rotational motion along the joint axis, while

the prismatic joint moves in a linear motion. Cylindrical robots operate within a

cylindrical-shaped work envelope.

Its representation in the AddressSpace is defined in the table below.

Table 133 – MotionDeviceCategoryEnumeration definition

Attribute Value

BrowseName MotionDeviceCategoryEnumeration

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:Enumeration type defined in OPC 10000-5

0:HasProperty Variable 0:EnumStrings 0:LocalizedText [] 0:PropertyType

10.2 AxisMotionProfileEnumeration

The AxisMotionProfileEnumeration provides the kind of axis motion as defined in Table 134.

Table 134 – AxisMotionProfileEnumeration

Name Value Description

OTHER 0 Any motion-profile which is not defined by the AxisMotionProfileEnumeration

ROTARY 1 Rotary motion is a rotation along a circular path with defined limits. Motion movement

is not going always in the same direction. Control unit is degree.

ROTARY_ENDLESS 2 Rotary motion is a rotation along a circular path with no limits. Motion movement is

going endless in the same direction. Control unit is degree.

LINEAR 3 Linear motion is a one-dimensional motion along a straight line with defined limits.

Motion movement is not going always in the same direction. Control unit is mm.

LINEAR_ENDLESS 4 Linear motion is a one-dimensional motion along a straight line with no limits. Motion

movement is going endless in the same direction. Control unit is mm.

Its representation in the AddressSpace is defined in the table below.

Page 98
Draft VDMA 40010-1:2025-06

Table 135 – AxisMotionProfileEnumeration definition

Attribute Value

BrowseName AxisMotionProfileEnumeration

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:Enumeration type defined in OPC 10000-5

0:HasProperty Variable 0:EnumStrings 0:LocalizedText [] 0:PropertyType

10.3 ExecutionModeEnumeration

The ExecutionModeEnumeration is defined in Table 136.

Table 136 – ExecutionModeEnumeration

Name Value Description

CYCLE 0 Single execution of a task program according to ISO 8373

CONTINUOUS 1 Task program is executed continuously and starts again automatically

STEP 2 Task program is executed in steps

Its representation in the AddressSpace is defined in the table below.

Table 137 – ExecutionModeEnumeration definition

Attribute Value

BrowseName ExecutionModeEnumeration

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:Enumeration type defined in OPC 10000-5

0:HasProperty Variable 0:EnumStrings 0:LocalizedText [] 0:PropertyType

10.4 OperationalModeEnumeration

ISO 10218-1:2011 Ch.5.7 defines the different possible Operational Modes. This enumeration is defined in
Table 138..

Page 99
 Draft VDMA 40010-1:2025-06

Table 138 – OperationalModeEnumeration

Name Value Description

OTHER 0 This value is used when there is no valid operational mode. Examples are:
- During system-boot
- The system is not calibrated (and hence cannot verify cartesian position
values)
- There is a failure in the safety system itself

MANUAL_REDUCED_SPEED 1 "Manual reduced speed" - name according to ISO 10218-1:2011

MANUAL_HIGH_SPEED 2 "Manual high speed" - name according to ISO 10218-1:2011

AUTOMATIC 3 "Automatic" - name according to ISO 10218-1:2011

AUTOMATIC_EXTERNAL 4 "Automatic external" - Same as "Automatic" but with external control, e.g.
by a PLC

Its representation in the AddressSpace is defined in the table below.

Table 139 – OperationalModeEnumeration definition

Attribute Value

BrowseName OperationalModeEnumeration

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Other

Subtype of the 0:Enumeration type defined in OPC 10000-5

0:HasProperty Variable 0:EnumStrings 0:LocalizedText [] 0:PropertyType

11 Profiles and ConformanceUnits

11.1 Conformance Units

This chapter defines the corresponding Conformance Units for the OPC UA Information Model for Robotics.

Page 100
Draft VDMA 40010-1:2025-06

Table 140 – Conformance Units for Robotics

Category Title Description

Server Rob MotionDeviceSystem
Base

Supports the MotionDeviceSystemType with all its mandatory instance declarations and
optionally the optional InstanceDeclarations with read access, thereby supporting the base
functionality defined in the Robotics Information Model. There is at least one instance of the
MotionDeviceSystemType (or a subtype) with all its mandatory elements. The mandatory
elements shall in-turn implement all of their mandatory elements recursively.

Server Rob MotionDevice AM
Extended

Supports the MotionDeviceType with all its mandatory instance declarations and optionally
the optional InstanceDeclarations with read access. There is at least one instance of the
MotionDeviceType (or a subtype) with all its mandatory elements. The Properties 2:AssetId,
2:ComponentName and 2:DeviceManual shall be provided
for at least one instance of the MotionDeviceType or its subtypes.

Server Rob MotionDevice CM
Extended

Supports the MotionDeviceType with all its mandatory instance declarations and optionally
the optional InstanceDeclarations with read access. There is at least one instance of the
MotionDeviceType (or a subtype) with all its mandatory elements. All Variables within the
2:ParameterSet of at least one MotionDeviceType instance shall also be implemented.

Server Rob MotionDevice Flangeload Supports the MotionDeviceType with all its mandatory instance declarations and optionally
the optional InstanceDeclarations with read access. There is at least one instance of the
MotionDeviceType (or a subtype) with all its mandatory elements. The FlangeLoad Object
shall be provided for all instances of the MotionDeviceType or its subtypes.

Server Rob TC Relationship Supports the MotionDeviceType with all its mandatory instance declarations and optionally
the optional InstanceDeclarations with read access. There is at least one instance of the
MotionDeviceType (or a subtype) with all its mandatory elements. The Variable
TaskControlReference shall be provided for all instances of the MotionDeviceType or its
subtypes.

Server Rob Axis AM Extended Supports the AxisType with all its mandatory instance declarations and optionally the optional
InstanceDeclarations with read access. There is at least one instance of the AxisType (or a
subtype) with all its mandatory elements. The Property 2:AssetId shall be
provided for at least one instance of the AxisType or its subtypes.

Server Rob Axis CM Extended Supports the AxisType with all its mandatory instance declarations and optionally the optional
InstanceDeclarations with read access. There is at least one instance of the AxisType (or a
subtype) with all its mandatory elements. All Variables within the 2:ParameterSet of at least
one instance of AxisType shall also be implemented.

Server Rob Axis AdditionalLoad Supports the AxisType with all its mandatory instance declarations and optionally the optional
InstanceDeclarations with read access. There is at least one instance of the AxisType (or a
subtype) with all its mandatory elements. The AdditionalLoad Object shall be provided for at
least one instance of the AxisType or its subtypes.

Server Rob PowerTrain AM Extended Supports the PowerTrainType with all its mandatory instance declarations and optionally the
optional InstanceDeclarations with read access. There is at least one instance of the
PowerTrainType (or a subtype) with all its mandatory elements. The Property
2:ComponentName shall be provided for at least one instance of the PowerTrainType or its
subtypes.

Server Rob Motor AM Extended Supports the MotorType with all its mandatory instance declarations and optionally the
optional InstanceDeclarations with read access. There is at least one instance of the
MotorType (or a subtype) with all its mandatory elements. The Property 2:AssetId shall be
provided for at least one instance of the MotorType or its subtypes.

Server Rob Motor CM Extended Supports the MotorType with all its mandatory instance declarations and optionally the
optional InstanceDeclarations with read access. There is at least one instance of the
MotorType (or a subtype) with all its mandatory elements. All Variables within the
2:ParameterSet of at least one instance of MotorType shall also be implemented.

Server Rob Gear AM Extended Supports the GearType with all its mandatory instance declarations and optionally the
optional InstanceDeclarations with read access. There is at least one instance of the
GearType (or a subtype) with all its mandatory elements. The Property 2:AssetId shall be
provided for at least one instance of the GearType or its subtypes.

Server Rob Gear CM Extended Supports the GearType with all its mandatory instance declarations and optionally the
optional InstanceDeclarations with read access. There is at least one instance of the
GearType (or a subtype) with all its mandatory elements. The Property Pitch shall be
provided for at least one instance of the GearType or its subtypes.

Server Rob Emergency Stop
Function

Supports the EmergencyStopFunctionType with all its mandatory instance declarations and
optionally the optional InstanceDeclarations with read access. There is at least one instance
of the EmergencyStopFunctionType (or a subtype) with all its mandatory elements in the
EmergencyStopFunctions folder (instance of FolderType) of an instance of SafetyStateType.

Server Rob Protective Stop Function Supports the ProtectiveStopFunctionType with all its mandatory instance declarations and
optionally the optional InstanceDeclarations with read access. There is at least one instance
of the ProtectiveStopFunctionType (or a subtype) with all its mandatory elements in the
ProtectiveStopFunctions folder (instance of FolderType) of an instance of SafetyStateType.

Page 101
 Draft VDMA 40010-1:2025-06

Category Title Description

Server Rob Controller AM Extended Supports the ControllerType with all its mandatory instance declarations and optionally the
optional InstanceDeclarations with read access. There is at least one instance of the
ControllerType (or a subtype) with all its mandatory elements. The Property 2:AssetId,
2:DeviceManual and 2:ComponentName shall be provided for at least one instance of the
ControllerType or its subtypes.

Server Rob Controller CM Extended Supports the ControllerType with all its mandatory instance declarations and optionally the
optional InstanceDeclarations with read access. There is at least one instance of the
ControllerType (or a subtype) with all its mandatory elements. The 2:ParameterSet with all
Variables within the 2:ParameterSet of at least one instance of ControllerType shall be
implemented.

Server Rob System Monitor Supports the SystemOperationType with all its mandatory instance declarations and
optionally the optional InstanceDeclarations. There is at least one instance of the
SystemOperationType (or a subtype) connected to a ControllerType instance with a
0:HasAddIn Reference.

Server Rob System Operation Supports the SystemOperationType with all its mandatory instance declarations and
optionally the optional InstanceDeclarations. There is at least one instance of the
SystemOperationType (or a subtype) connected to a ControllerType instance with a
0:HasAddIn Reference. Each instance of the SystemOperationStateMachineType shall
implement the methods defined within the SystemOperationStateMachineType.

Server Rob RobAckCondInstance Supports the SystemOperationType with all its mandatory instance declarations and
optionally the optional InstanceDeclarations. There is at least one instance of the
SystemOperationType (or a subtype) connected to a ControllerType instance with a
0:HasAddIn Reference. Each instance of the SystemOperationType shall implement the
Conditions InstanceDeclaration defined within the SystemOperationType. The
MultiAcknowledgeableConditionType is supported with all its mandatory instance
declarations and optionally the optional InstanceDeclarations. At least once instance of
MultiAcknowledgeableConditionType shall be provided within the Conditions
InstanceDeclaration defined within the SystemOperationType.

Server Rob System Events The OPC UA Server supports eventing and shall support the Events from the
MotionDeviceSystemType instance.

Server Rob System IdleSubstate Supports the SystemOperationStateMachineType with all its mandatory instance declarations
and optionally the optional InstanceDeclarations. There is at least one instance of the
SystemOperationStateMachineType (or a subtype). At least one instance of the
SystemOperationStateMachineType shall implement the IdleSubstateMachine
InstanceDeclaration defined within the SystemOperationStateMachineType.

Server Rob System ExecutingSubstate Supports the SystemOperationStateMachineType with all its mandatory instance declarations
and optionally the optional InstanceDeclarations. There is at least one instance of the
SystemOperationStateMachineType (or a subtype). At least one instance of the
SystemOperationStateMachineType shall implement the ExecutingSubstateMachine
InstanceDeclaration defined within the SystemOperationStateMachineType.

Server Rob Task Control CM Extended Supports the TaskControlType with all its mandatory instance declarations and optionally the
optional InstanceDeclarations with read access. There is at least one instance of the
TaskControlType (or a subtype) with all its mandatory elements. The Variable
ExecutionMode within the 2:ParameterSet, shall be provided for at least one instance of
instances of the TaskControlType or its subtypes.

Server Rob Task Control Monitor Supports the TaskControlOperationType with all its mandatory instance declarations and
optionally the optional InstanceDeclarations. There is at least one instance of the
TaskControlOperationType (or a subtype) connected to a TaskControlType instance with a
0:HasAddIn Reference.

Server Rob Task Control Operation Supports the TaskControlOperationType with all its mandatory instance declarations and
optionally the optional InstanceDeclarations. There is at least one instance of the
TaskControlOperationType (or a subtype) connected to a TaskControlType instance with a
0:HasAddIn Reference. Each instance of the TaskControlOperationStateMachineType shall
implement the methods defined within the TaskControlOperationStateMachineType.

Server Rob TC MD Relationship Supports the TaskControlOperationType with all its mandatory instance declarations and
optionally the optional InstanceDeclarations. There is at least one instance of the
TaskControlOperationType (or a subtype) connected to a TaskControlType instance with a
0:HasAddIn Reference. Each instance of the TaskControlOperationType shall implement the
MotionDevicesUnterControl Property defined within the TaskControlOperationType.

Server Rob Task Control
ReadySubstate

Supports the TaskControlOperationStateMachineType with all its mandatory instance
declarations and optionally the optional InstanceDeclarations. There is at least one instance
of the TaskControlOperationStateMachineType (or a subtype). At least one instance of the
TaskControlOperationStateMachineType shall implement the ReadySubstateMachine
InstanceDeclaration defined within the TaskControlOperationStateMachineType.

Page 102
Draft VDMA 40010-1:2025-06

Category Title Description

Server Task Control Ready Reset Supports the TaskControlOperationStateMachineType with all its mandatory instance
declarations and optionally the optional InstanceDeclarations. There is at least one instance
of the TaskControlOperationStateMachineType (or a subtype). Each instance of the
TaskControlOperationStateMachineType shall implement the ReadySubstateMachine
InstanceDeclaration defined within the TaskControlOperationStateMachineType. At least one
instance of the ReadySubstateMachine shall implement the ResetToProgramStart method
defined within the ReadySubstateMachineType.

Server Rob Program File Directory At least one instance of the ControllerType shall implement the Programs
InstanceDeclaration defined within the ControllerType.

Server Rob Task Control Modules At least one instance of the TaskControlType shall implement the TaskModules
InstanceDeclaration defined within the TaskControlType. If a TaskControlType instance
implements the TaskModules InstanceDeclaration (defined within the TaskControlType), then
all TaskControlType instances (in the TaskControls folder) of that ControllerType instance,
shall implement the TaskModules InstanceDeclaration.

11.2 Profiles

11.2.1 Profile list

Table 141 lists all Profiles defined in this document and defines their URIs.

Table 141 – Profile URIs for OPC UA for Robotics

Profile URI

Robotics Base Server Facet http://opcfoundation.org/UA-Profile/Robotics/Server/RobBase

Robotics MDS Operation Server Facet http://opcfoundation.org/UA-Profile/Robotics/Server/RobOperation

Robotics AM Extended Server Facet http://opcfoundation.org/UA-Profile/Robotics/Server/RobAMExtended

Robotics CM Extended Server Facet http://opcfoundation.org/UA-Profile/Robotics/Server/RobCMExtended

11.2.2 Server Facets

11.2.2.1 Overview

The following sections specify the Facets available for Servers that implement the OPC UA for Robotics
companion specification. Each section defines and describes a Facet or Profile.

11.2.2.2 Robotics Base Server Facet

Table 142 defines a Facet that describes the Robotics Base Server Facet.

Table 142 – Robotics Base Server Facet

Group Conformance Unit / Profile Title Mandatory /
Optional

Address Space Model 0:Address Space Base M

Address Space Model 0:Address Space Interfaces M

Address Space Model 0:Address Space AddIn Reference M

Address Space Model 0:Address Space AddIn DefaultInstanceBrowsename M

View Services 0:View Basic M

View Services 0:View TranslateBrowsePath M

View Services 0:View Minimum Continuation Point 01 M

Attribute Services 0:Attribute Read M

Robotics Rob MotionDeviceSystem Base M

11.2.2.3 Robotics MDS Operation Server Facet

Table 143 defines a Facet that describes the Robotics MDS Operation Server Facet.

Page 103
 Draft VDMA 40010-1:2025-06

Table 143 – Robotics MDS Operation Server Facet

Group Conformance Unit / Profile Title Mandatory
/ Optional

Profile Robotics Base Server Facet M

Robotics Rob System Operation M

Robotics Rob Task Control Operation O

Robotics Rob RobAckCondInstance O

Robotics Rob Task Control ReadySubstate O

Robotics Task Control Ready Reset O

Robotics Rob Program File Directory O

Robotics Rob Task Control Modules O

11.2.2.4 Robotics AM Extended Server Facet

 Table 144 defines a Facet that describes the Robotics AM Extended Server Facet.

Table 144 – Robotics AM Extended Server Facet

Group Conformance Unit / Profile Title Mandatory /
Optional

Robotics Rob MotionDeviceSystem Base M

Robotics Rob MotionDevice AM Extended M

Robotics Rob MotionDevice Flangeload O

Robotics Rob TC Relationship O

Robotics Rob Axis AM Extended M

Robotics Rob Axis AdditionalLoad O

Robotics Rob PowerTrain AM Extended M

Robotics Rob Gear AM Extended M

Robotics Rob Emergency Stop Function O

Robotics Rob Protective Stop Function O

Robotics Rob Controller AM Extended M

Robotics Rob TC MD Relationship O

Robotics Rob Program File Directory O

Robotics Rob Task Control Modules O

11.2.2.5 Robotics CM Extended Server Facet

 Table 145 defines a Facet that describes the Robotics CM Extended Server Facet.

Page 104
Draft VDMA 40010-1:2025-06

Table 145 – Robotics CM Extended Server Facet

Group Conformance Unit / Profile Title Mandatory /
Optional

Robotics Rob MotionDeviceSystem Base M

Robotics Rob MotionDevice CM Extended M

Robotics Rob Axis CM Extended M

Robotics Rob PowerTrain CM Extended M

Robotics Rob Gear CM Extended M

Robotics Rob Controller CM Extended M

Robotics Rob System Monitor O

Robotics Rob System Events O

Robotics Rob System IdleSubstate O

Robotics Rob System ExecutingSubstate O

Robotics Rob Task Control CM Extended M

Robotics Rob Task Control Monitor O

Robotics Rob RobAckCondInstance O

12 Namespaces

12.1 Namespace Metadata

Table 146 defines the namespace metadata for this document. The Object is used to provide version information
for the namespace and an indication about static Nodes. Static Nodes are identical for all Attributes in all
Servers, including the Value Attribute. See OPC 10000-5 for more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a component of the
Namespaces Object that is part of the Server Object. The NamespaceMetadataType ObjectType and its
Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file. The
UANodeSet XML schema is defined in Table 146

Table 146 – NamespaceMetadata Object for this Document

Attribute Value

BrowseName http://opcfoundation.org/UA/Robotics/

Property DataType Value

NamespaceUri String http://opcfoundation.org/UA/Robotics/

NamespaceVersion String 1.01

NamespacePublicationDate DateTime 2025-03-17

IsNamespaceSubset Boolean False

StaticNodeIdTypes IdType [] 0

StaticNumericNodeIdRange NumericRange []

StaticStringNodeIdPattern String

Note: The IsNamespaceSubset Property is set to False as the UaNodeSet XML file contains the complete Namespace.
Servers only exposing a subset of the Namespace need to change the value to True.

12.2 Handling of OPC UA Namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The
Attributes NodeId and BrowseName are identifiers. A Node in the UA AddressSpace is unambiguously identified
using a NodeId. Unlike NodeIds, the BrowseName cannot be used to unambiguously identify a Node. Different
Nodes may have the same BrowseName. They are used to build a browse path between two Nodes or to define
a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName. However, if they
want to provide a standard Property, its BrowseName shall have the namespace of the standards body although
the namespace of the NodeId reflects something else, for example the EngineeringUnits Property. All NodeIds
of Nodes not defined in this document shall not use the standard namespaces.

Table 147 provides a list of mandatory and optional namespaces used in an OPC UA for Robotics Server.

Page 105
 Draft VDMA 40010-1:2025-06

Table 147 – Namespaces used in a OPC Robotics Server.

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the OPC UA
specification. This namespace shall have namespace index 0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This namespace
shall have namespace index 1.

Mandatory

http://opcfoundation.org/UA/DI/ Namespace for NodeIds and BrowseNames defined in OPC 10000-
100. The namespace index is Server specific.

Mandatory

http://opcfoundation.org/UA/Machinery/ Namespace for NodeIds and BrowseNames defined in OPC UA for
Machinery. The namespace index is Server specific.

Optional

http://opcfoundation.org/UA/Robotics/ Namespace for NodeIds and BrowseNames defined in this
document. The namespace index is Server specific.

Mandatory

Vendor specific types A Server may provide vendor-specific types like types derived from
ObjectTypes defined in this document in a vendor-specific
namespace.

Optional

Vendor specific instances A Server provides vendor-specific instances of the standard types or
vendor-specific instances of vendor-specific types in a vendor-
specific namespace.

It is recommended to separate vendor specific types and vendor
specific instances into two or more namespaces.

Mandatory

Table 148 provides a list of namespaces and their indices used for BrowseNames in this document. The default
namespace of this document is not listed since all BrowseNames without prefix use this default namespace.

Table 148 – Namespaces used in this document.

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

http://opcfoundation.org/UA/DI/ 2 2:DeviceRevision

http://opcfoundation.org/UA/Machinery/ 3 3:MachineIdentificationType

Page 106
Draft VDMA 40010-1:2025-06

Annex A
(normative)

OPC UA for Robotics Namespace and mappings

A.1 Namespace and identifiers for Robotics Information Model

The Robotics Information Model is identified by the following URI:

http://opcfoundation.org/UA/Robotics/

Documentation for the NamespaceUri can be found here.

The NodeSet associated with this version of specification can be found here:

https://reference.opcfoundation.org/nodesets/?u=http://opcfoundation.org/UA/Robotics/&v=1.01&i=1

The NodeSet associated with the latest version of the specification can be found here:

https://reference.opcfoundation.org/nodesets/?u=http://opcfoundation.org/Robotics/&i=1

Supplementary files for the Robotics Information Model can be found here:

https://reference.opcfoundation.org/nodesets/?u=http://opcfoundation.org/Robotics/&v=1.01&i=2

The files associated with the latest version of the specification can be found here:

https://reference.opcfoundation.org/nodesets/?u=http://opcfoundation.org/Robotics/&i=2

A.2 Capability Identifier

The capability identifier for this document shall be:

Robotics

http://opcfoundation.org/UA/Robotics/
https://reference.opcfoundation.org/nodesets?u=http://opcfoundation.org/UA/Robotics/
https://reference.opcfoundation.org/nodesets/?u=http://opcfoundation.org/UA/Robotics/&v=1.01&i=1
https://reference.opcfoundation.org/nodesets/?u=http://opcfoundation.org/Robotics/&i=1
https://reference.opcfoundation.org/nodesets/?u=http://opcfoundation.org/Robotics/&v=1.01&i=2
https://reference.opcfoundation.org/nodesets/?u=http://opcfoundation.org/Robotics/&i=2

Page 107
 Draft VDMA 40010-1:2025-06

Annex B
(informative)

Examples

B.1 Overview

This chapter describes examples for motion device systems, motion devices, axes, and power trains.

In addition, this chapter contains examples of how to use the references contained in this specification.

B.2 Example for motion device systems

Typically, a motion device system consists of at least one manipulator and one control unit. Manipulators shown
in Figure B.1, Figure B.2, Figure B.3, Figure B.4, Figure B.5, Figure B.6 and Figure B.7 normally have only one
control unit.

Figure B.8 shows an example with four motion devices which can be controlled by one control unit.

The motion device system illustrated in Figure B.9 consists of three motion devices and may have one or more
control units regarding the motion devices. When a safety PLC is integrated in this motion device system, it can
be described as an own instance of a ControllerType. This Instance would have no Reference to an instance of
a motion device because the safety PLC doesn´t control a manipulator. It could however have a Reference to
the instantiated SafetyStates.

B.3 Examples for motion devices and controllers in a motion device system

The motion devices shown in Figure B.8 are typically controlled by one controller unit. Each motion device
IsControlledBy the same controller.

The system illustrated in Figure B.9 may have two control units. For example, one controller Controls both
articulated robots and the mobile platform IsControlledBy the other controller.

B.4 Examples for motion devices

A motion device can be any manipulator e.g. a robot, a linear unit, or a turn table. For each motion device which
has an own type plate an instance of a MotionDeviceType shall be created.

The kind of motion device shall be described with the Property MotionDeviceCategory of the ParameterSet of
the MotionDeviceType by the MotionDeviceCategoryEnumeration, which is based on definitions of ISO
8373:2012.

The Figures Figure B.1 and Figure B.2 show examples of cartesian manipulators.

Figure B.2 shows a portal manipulator, a variant of a cartesian manipulator. Axis 1 in this example is driven with
master-slave and a robot-hand is mounted at the flange of the cartesian manipulator.

Page 108
Draft VDMA 40010-1:2025-06

Courtesy of KraussMaffei, used with permission.

Figure B.1 – Cartesian manipulator

Courtesy of KUKA, used with permission.

Figure B.2 – Portal manipulator

Figure B.3 shows an example of a parallel manipulator. So called delta robots, as shown in Figure B.4, are also
parallel manipulators.

Page 109
 Draft VDMA 40010-1:2025-06

Courtesy of Beckhoff,
used with permission.

Figure B.3 – Stewart platform or Hexapod

Figure B.4 shows an abstract example of a delta robot.

Courtesy of ABB, used with permission.

Figure B.4 – Delta robot

Figure B.5 shows an abstract example of a SCARA robot.

Page 110
Draft VDMA 40010-1:2025-06

Courtesy of Mitsubishi Electric,
used with permission.

Figure B.5 – Scara robot

A typical example of an articulated robot is shown in Figure B.6.

Courtesy of ABB, used with permission.

Figure B.6 – Articulated robot

Page 111
 Draft VDMA 40010-1:2025-06

Another example of an articulated robot is a so-called humanoid robot as Figure B.7 schematically shows.

Courtesy of ABB, used with permission.

Figure B.7 – Schematic of a humanoid robot

B.5 Examples of combinations of motion devices in a motion device system

Figure B.8 shows four motion devices integrated in one motion device system: an articulated robot on a linear
unit with two turntables.

Courtesy of KUKA, used with permission.

Figure B.8 – Motion device system 1

Page 112
Draft VDMA 40010-1:2025-06

Figure B.9 shows three motion devices in one motion device system: two articulated robots on a mobile platform.

Courtesy of KUKA, used with permission.

Figure B.9 – Motion device system 2

B.6 Axes and power trains

An axis of a motion device is the mechanical joint of a manipulator that performs a linear or a rotational
movement.

Power trains, consisting of gears, motors, and drives, are responsible for the movement of axes. Drives can be
integrated in the manipulator or inside a controller cabinet. References describe the relationships between the
components of the power train.

Figure B.10 shows two possibilities for a realization of a linear two-dimensional motion device. While in the left
figure there is a 1:1 relation between power train and mechanical axis in the right figure power train 1 and power
train 2 have effect on the movement of axis 1 and on axis 2. An additional load is located on the mechanical
axis 2 but has effect on both power trains.

References describe the relationships between the movement of axes and the power trains that initiate the
movement.

Page 113
 Draft VDMA 40010-1:2025-06

Figure B.10 – Axis and power train coupling

B.7 Virtual Axes

If there is the need to show information about virtual axes, which are not actively run by a power train, then
these axes shall be provided, but they don´t have References to a power train. An example for a virtual axis is,
when a robot control calculates the movement of an external axis in accordance with the robot movement, e.g.
for a servo welding gun mounted at the robot flange, but doesn´t control actively the movement of this axis with
an internal power train.

Another example for a virtual axis can be found in a delta robot. When the fourth axis is driven through a
telescope shaft and cardan joints, then the length of the telescope shaft is depending on the positions of axes
1, 2 and 3. This length can be seen as a virtual axis, as it has constraints similar to a real axis, e.g. position
limits. But it is not possible to actively move this axis.

B.8 Examples for axes and power trains

Figure B.1 and Figure B.2 show different versions of Cartesian robots. Figure B.1 shows a three-axis robot
which has one dedicated power train for each axis: A power train Moves exactly one axis and so an axis only
Requires one dedicated power train. One motor of a power train IsDrivenBy a drive and IsConnectedTo a gear.

Figure B.2 shows a three-axis robot with a master-slave driven axis 1. The first and second power train Moves
axis 1. The first power train HasSlave the second power train. Axis 1 Requires the first and the second power
train. For axis 2 and 3 one power train Moves exactly one axis and so an axis only Requires one dedicated
power train.

B.9 Examples for the use of references regarding axes and power trains

B.9.1 Example articulated six-axis industrial robot.

The typical six-axis industrial robot shown in Figure B.6 normally has 6 power trains for the movement of the 6
axes. Due to the robot hand design, various power trains initiate internal compensation movements. When only
the motor of power train 4 is rotating then axes 4, 5, and 6 are moving. When only axis 4 should be moved and
axes 5 and 6 should stand still then power trains 5 and 6 must compensate the movement of these axes. Thus
a movement of only axis 4 requires rotation of the motors of the power trains 4, 5 and 6. The complete set of
references is depicted in Figure B.11.

Page 114
Draft VDMA 40010-1:2025-06

Figure B.11 – Coupling references for a typical six-axis industrial robot.

A power train Moves an axis means that if the motor of only this power train moves then there will be an effect
on the position of the axis.

i. Power train 1 Moves axis 1

ii. Power train 2 Moves axis 2

iii. Power train 3 Moves axis 3

iv. Power train 4 Moves axis 4, axis 5 and axis 6

v. Power train 5 Moves axis 5 and axis 6

vi. Power train 6 Moves axis 6

Description regarding iv.: When only the motor of power train 4 is moving there is an effect on the
position of axis 4, axis 5 and axis 6.

An axis IsMovedBy a power trains means, that actions of these power trains have an influence on the axis
position. It is the inverse of the Moves reference.

i. Axis 1 IsMovedBy power train 1

ii. Axis 2 IsMovedBy power train 2

iii. Axis 3 IsMovedBy power train 3

iv. Axis 4 IsMovedBy power train 4

v. Axis 5 IsMovedBy power train 5 and power train 4

vi. Axis 6 IsMovedBy power train 6, power train 5 and power train 4

Description regarding vi.: Axis 6 movement is depending on movement from power train 6, power train
5 and power train 4.

An axis Requires the movement of a motor of a power train to position but also other power trains might be
involved by this movement to compensation movements of affected axes.

i. Axis 1 Requires power train 1

ii. Axis 2 Requires power train 2

iii. Axis 3 Requires power train 3

iv. Axis 4 Requires power train 4, power train 5 and power train 6

v. Axis 5 Requires power train 5 and power train 6

vi. Axis 6 Requires power train 6

Description regarding iv.: When only axis 4 should be moved compensation movements of power train
5 and power train 6 are necessary to ensure a standstill of axis 5 and axis 6.

Page 115
 Draft VDMA 40010-1:2025-06

A power train IsRequiredBy axes means that this power train is active when only the referenced axis should
be moved and all other axes should stand still. It is the inverse of the Requires reference.

i. Power train 1 IsRequiredBy axis 1

ii. Power train 2 IsRequiredBy axis 2

iii. Power train 3 IsRequiredBy axis 3

iv. Power train 4 IsRequiredBy axis 4

v. Power train 5 IsRequiredBy axis 4 and axis 5

vi. Power train 6 IsRequiredBy axis 4, axis 5 and axis 6

Description regarding vi: Power train 6 participates in positioning of axis 4, axis 5 and axis 6.

B.9.2 Example articulated six-axis industrial robot with 3 leader-follower axes

A high-payload six-axis industrial robot shown in Figure B.6 can have nine power trains for the movement of the
six axes. In this example the axes 1 to 3 are each driven by two power trains with leader-follower configuration.

Figure B.12 shows the use of the HasSlave reference in addition to the power train to axis references.

Figure B.12 – Coupling references for a six-axis industrial robot with leader-follower axes

A power train HasSlave a power train means that one power train is the master of a leader-follower-configuration
and he references HasSlave to power train which is slave coupled.

HasSlave References:

i. Power train 1 HasSlave power train 2

ii. Power train 3 HasSlave power train 4

iii. Power train 5 HasSlave power train 6

For this leader-follower configuration the Moves and Requires references :

Page 116
Draft VDMA 40010-1:2025-06

i. Power train 1 Moves axis 1

ii. Power train 2 Moves axis 1

iii. Power train 3 Moves axis 2

iv. Power train 4 Moves axis 2

v. Power train 5 Moves axis 3

vi. Power train 6 Moves axis 3

vii. Power train 7 Moves axis 4, axis 5 and axis 6

viii. Power train 8 Moves axis 5 and axis 6

ix. Power train 9 Moves axis 6

i. Axis 1 Requires power train 1 and power train 2

ii. Axis 2 Requires power train 3 and power train 4

iii. Axis 3 Requires power train 5 and power train 6

iv. Axis 4 Requires power train 7, power train 8 and power train 9

v. Axis 5 Requires power train 8 and power train 9

vi. Axis 6 Requires power train 9

B.9.3 Example linear two-dimensional motion device

For the left motion device in Figure B.10 the References between axes and power trains are shown in Figure
B.13.

Figure B.13 – Coupling references for a simple linear two-dimensional motion device

Moves References:

iv. Power train 1 Moves axis 1

v. Power train 2 Moves axis 2

i. Axis 1 IsMovedBy power train 1

ii. Axis 2 IsMovedBy power train 2

Requires References from power train to axis

i. Axis 1 Requires power train 1

ii. Axis 2 Requires power train 2

i. Power Train 1 IsRequiredBy axis 1

ii. Power Train 2 IsRequiredBy axis 2

For the right motion device in Figure B.10 the References between axes and power trains are shown in Figure
B.14.

Page 117
 Draft VDMA 40010-1:2025-06

Figure B.14 – Coupling references for linear two-dimensional motion device

Moves References:

vi. Power train 1 Moves axis 1 and axis 2

vii. Power train 2 Moves axis 1 and axis 2

iii. Axis 1 IsMovedBy power train 1 and power train 2

iv. Axis 2 IsMovedBy power train 1 and power train 2

Requires References from power train to axis

iii. Axis 1 Requires power train 1 and power train 2

iv. Axis 2 Requires power train 1 and power train 2

iii. Power Train 1 IsRequiredBy axis 1 and axis 2

iv. Power Train 2 IsRequiredBy axis 1 and axis 2

B.10 Representations of exemplary server implementations

This chapter describes different examples for the usage of DriveType or a SubType of ComponentType defined
in OPC 10000-100 inclusive the references described in this specification.

All views show only the instances and references necessary to better illustrate the examples described.

B.10.1 ObjectTypes and references used with DriveType instances

Figure B.15 describes the usage of DriveType as an instance of a single-slot drive regarding the manipulator
showed Figure B.10 on the left side.

Page 118
Draft VDMA 40010-1:2025-06

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Gear 2

Controller 1

ComponentsPowerTrains

Axes

DriveType

Drive 1

DriveType

Drive 2

Moves

Moves

IsDrivenBy

IsDrivenBy

Requires

Requires

IsConnectedTo

IsConnectedTo

Figure B.15 – IsDrivenby references to DriveType instances

Page 119
 Draft VDMA 40010-1:2025-06

B.10.2 ObjectTypes and references used with instances of vendor specific subtypes of
BaseObjectType for drive-channels

Figure B.16 describes the usage of slots or channels of a multi-slot-drive. The instance of the slot is a vendor
specific subtype of BaseObjectType.

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Gear 2

Controller 1

ComponentsPowerTrains

Axes

DriveType

Multi-Slot Drive 1

Moves

Moves

IsDrivenBy

IsDrivenBy

Requires

Requires

0:BaseObjectType

Slot 1

0:BaseObjectType

Slot 2

IsConnectedTo

IsConnectedTo

Figure B.16 – IsDrivenby references to vendor specific subtypes of BaseObjectType instances

Page 120
Draft VDMA 40010-1:2025-06

B.10.3 ObjectTypes and references used with instances DriveType for drives with drive-
channels

Figure B.17 describes the usage of DriveType for a multi-slot-drive if deeper information of slot definition is not
available.

It is allowed that several instances of MotorType reference IsDrivenBy to one multi-slot-drive.

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Gear 2

Controller 1

ComponentsPowerTrains

Axes

DriveType

Mulit-Slot Drive 1

Moves

Moves

IsDrivenBy

IsDrivenBy

Requires

Requires

IsConnectedTo

IsConnectedTo

Figure B.17 – IsDrivenby references to DriveType instances for multi-slot drives w/o slots

Page 121
 Draft VDMA 40010-1:2025-06

B.10.4 ObjectTypes and references used with instances of vendor specific subtypes of
BaseObjectType for motor-integrated-drives

Figure B.18 describes the usage with a motor-integrated-drive as one physical device. The instance MyDrive is
a vendor specific subtype of BaseObjectType. Identification properties of this physical device shall be defined
within the referenced MotorType.

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Gear 2

Controller 1

ComponentsPowerTrains

Axes

Moves

Moves

IsDrivenBy

IsDrivenBy

Requires

Requires

0:BaseObjectType

MyDrive

0:BaseObjectType

MyDrive

IsConnectedTo

IsConnectedTo

Figure B.18 – IsDrivenby used with motor-integrated-drives

Page 122
Draft VDMA 40010-1:2025-06

B.10.5 Abstract example of a six-axis robot with master-slave axis and drive-slots

Figure B.19 describes an example view on a server with the instances of ObjectTypes and references of a six-
axis robot with master-slave axis and drive-slots described in Annex B.9.2.

If a leader-follower configuration only has one gear this shall be placed inside the leader-powertrain.

DeviceSet

MotionDeviceSystem

MotionDevice 1

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Motor 2

Controller 1

ComponentsPowerTrains

Axes

DriveType

Multi-Slot Drive 1

IsDrivenBy

IsDrivenBy

Requires

Requires

0:BaseObjectType

Slot 1

0:BaseObjectType

Slot 2

0:BaseObjectType

Slot 3

Moves

Moves

HasSlave

PowerTrain 3

PowerTrain 4

Motor 3

Gear 2

Motor 4

Requires

Requires

Moves

Moves

HasSlave

Axis 3

PowerTrain 5

PowerTrain 6

Motor 5

Gear 3

Motor 6

Requires

Requires

Moves

Moves

HasSlave

DriveType

Multi-Slot Drive 2

0:BaseObjectType

Slot 1

0:BaseObjectType

Slot 2

0:BaseObjectType

Slot 3

DriveType

Multi-Slot Drive 3

0:BaseObjectType

Slot 1

0:BaseObjectType

Slot 2

0:BaseObjectType

Slot 3Axis 4 PowerTrain 7

Motor 7

Gear 4

IsDrivenBy

IsDrivenBy

IsDrivenBy

IsDrivenBy

IsDrivenBy

Axis 5 PowerTrain 8

Motor 8

Gear 5

Requires

Axis 6 PowerTrain 9

Motor 9

Gear 6
Moves

Requires

IsDrivenBy

IsDrivenBy

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

Moves
Requires

Moves

Figure B.19 – View on a six-axis robot with master-slave and drive-slots

Page 123
 Draft VDMA 40010-1:2025-06

B.10.6 Abstract example of a motion device system with three motion devices

Figure B.20 describes an example view on a server with the instances of ObjectTypes and references of a
motion device system consisting of a six-axis robot, a linear unit and a turntable which are controlled by one
controller.

DeviceSet

MotionDeviceSystem

MotionDevice 1

(6-Axis-Robot)

Organizes

PowerTrain 1

PowerTrain 2

Axis 1

Axis 2

Motor 1

Gear 1

Controller 1

ComponentsPowerTrains

Axes

DriveType

Multi-Slot Drive 1

IsDrivenBy

IsDrivenBy

Requires

0:BaseObjectType

Slot 1

0:BaseObjectType

Slot 2

0:BaseObjectType

Slot 3

Moves

Moves

PowerTrain 3

PowerTrain 4

Requires

Axis 3

DriveType

Multi-Slot Drive 2

0:BaseObjectType

Slot 1

0:BaseObjectType

Slot 2

0:BaseObjectType

Slot 3

DriveType

Multi-Slot Drive 3

0:BaseObjectType

Slot 1

0:BaseObjectType

Slot 2

0:BaseObjectType

Slot 3

Axis 4

IsDrivenBy

IsDrivenBy

IsDrivenBy

IsDrivenBy

IsDrivenBy

Axis 5

Axis 6

IsDrivenBy

IsDrivenBy

Motor 2

Gear 2

Motor 3

Gear 3

Requires

Moves

Motor 4

Gear 4

PowerTrain 5

Motor 5

Gear 5

PowerTrain 6

Motor 6

Gear 6

Requires

Moves

MotionDevice 2

(Turn Table)

Axis 1

Axis 2

Axes

PowerTrain 1

PowerTrain 2

PowerTrains

Motor 1

Gear 1

Motor 2

Gear 2

Requires

Moves

Requires

Moves

MotionDevice 3

(Linear Axis)

Axis 1

Axes

PowerTrain 1

PowerTrains

Motor 1

Gear 1

Requires

Moves

Controls

Controls

Controls

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

IsConnectedTo

Requires

Requires

Moves

Moves

Figure B.20 – View on a motion device system with 3 motion devices controlled by one controller

Page 124
Draft VDMA 40010-1:2025-06

Annex C
(informative)

Usage with OPC 40001-1 UA CS for Machinery Part 1 – Basic Building Blocks

C.1 Overview

This appendix provides informal examples on how the building blocks defined in OPC UA for Machinery

Part 1: Basic Building Blocks can be used merged with the Robotics Information Model.

C.2 Identification and Finding Machines

In Fehler! Verweisquelle konnte nicht gefunden werden. an example is given, showing the i
dentification and Nameplate and Finding all Machines in Server use cases. The server provides
information about a Robotics system.

As this Robotics specification Part 1 already defines some Properties for identification directly, those
are only referenced from the Identification functional group.

Note that a Robotics system typically contains several machine parts with own nameplates. E.g. the
Declaration of Incorporation of Partly Completed Machinery according Machinery Directive
2006/42/EU for robots provides the Model and the SerialNumber for the robot and for the controller.

Page 125
 Draft VDMA 40010-1:2025-06

0:FolderType::
0:Objects

0:FolderType::
Machines

Organizes

MachineIdentificationType
2:Identification

Organizes

HasAddIn

2:ManufacturerUri

2:ProductInstanceUri

. . .

Organizes

0:FolderType::
0:Root

Organizes

0:BaseObjectType::
2:DeviceSet

Organizes

3:MotionDeviceSystemType::
MotionDeviceSystem

Organizes

0:FolderType::
MotionDevices

3:MotionDeviceType::
Robot

3:MotionDeviceType::
Turntable

0:FolderType::
Controllers

3:ControllerType::
RobotControl

2:Manufacturer

2:SerialNumber

. . .

2:Manufacturer

2:SerialNumber

Organizes

. . .

MachineIdentificationType::
2:Identification

HasAddIn

2:ManufacturerUri

2:ProductInstanceUri

. . .

2:Manufacturer

2:SerialNumber

MachineIdentificationType::
2:Identification

2:ManufacturerUri

2:ProductInstanceUri

HasAddIn

. . .

. . .

Namespaces:
0: OPC UA
Without number: OPC UA for Machinery
2: OPC UA Devices (Part 100)
3: Robotics

Figure C.1 – Example Finding all Machines and Machine Identification

Page 126
Draft VDMA 40010-1:2025-06

C.3 Component Identification and Finding Components of a Machine

In Fehler! Verweisquelle konnte nicht gefunden werden. , a partially view on an example Robotics s
ystem is shown and the components are organized according to the Robotics specification. And in
addition, the figure shows according to the OPC UA for Machinery Part 1: Basic Building Blocks the
Component Identification and Nameplate and Finding all Components and Machines of a Robotics
system.

Page 127
 Draft VDMA 40010-1:2025-06

0:FolderType::
0:Objects

0:FolderType::
Machines

Organizes

Organizes

Organizes

0:FolderType::
0:Root

Organizes
0:BaseObjectType::

2:DeviceSet
Organizes

3:MotionDeviceSystemType::
MotionDeviceSystem

Organizes

0:FolderType::
MotionDevices

3:MotionDeviceType::
Robot

0:FolderType::
Controllers

3:ControllerType::
RobotControl

Namespaces:
0: OPC UA
Without number: OPC UA for Machinery
2: OPC UA Devices (Part 100)
3: Robotics 0:FolderType::

3:Components

3:DriveType::
Drive1

0:FolderType::
3:PowerTrains

3:MotorType::
Motor1

MachineComponentsType::
Components

HasAddIn

MachineComponentsType::
Components

HasAddIn

ComponentIdentificationType::
2:Identification

HasAddIn

ComponentIdentificationType::
2:Identification

HasAddIn

MachineIdentificationType::
2:Identification

HasAddIn

HasAddIn
MachineIdentificationType::

2:Identification

2:Manufacturer

2:SerialNumber

2:Manufacturer

2:SerialNumber

3:MotorType::
Motor2

ComponentIdentificationType::
2:Identification

HasAddIn

2:Manufacturer

2:SerialNumber

Figure C.2 – Example Finding all Machines and Components and Component Identification

